DOI QR코드

DOI QR Code

Direct integration method for stochastic finite element analysis of nonlinear dynamic response

  • Zhang, S.W. (Beijing Agric. Engrg. Univ.) ;
  • Ellingwood, B. (Dept. of Civil Engrg., Johns Hopkins Univ.) ;
  • Corotis, R. (School of Engineering and Applied Science, University of Colorado) ;
  • Zhang, Jun (State of Connecticut, Dept. of Transportation)
  • Published : 1995.05.25

Abstract

Stochastic response of systems to random excitation can be estimated by direct integration methods in the time domain such as the stochastic central difference method (SCDM). In this paper, the SCDM is applied to compute the variance and covariance in response of linear and nonlinear structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems with both deterministic and random material properties excited by white noise. For the former case, closed-form solutions can be obtained. Numerical results also are presented for a simply supported geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam is idealized by the stochastic finite element method. A perturbation technique is applied to formulate the equations of motion of the system, and the dynamic structural response statistics are obtained in a time domain analysis. The effect of variations in structural parameters and the numerical stability of the SCDM also are examined.

Keywords

References

  1. Bathe, K. J. and Wilson, E. (1976), Numerical methods in finite element analysis, Prentice-Hall, Englewood Cliffs, NJ.
  2. Chang, C.C. and Yang, Henry T. Y. (1991), "Random vibration of flexible uncertain beam elements", J. Engrg. Mech., 117(10), 2329-2350. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2329)
  3. Corotis, R. B. and Marshall, T. A. (1977), "Oscillator response to modulated random excitation", J. of The Engineering Mechanics Division, ASCE, 103(EM4), 501-513.
  4. Crandall, S. H. and Mark, W. D. (1963), Random vibration in mechanical systems, Academic press Inc., New York, N.Y.
  5. Crandall, S. H. and Zhu, W. Q. (1983), "Random vibration: A survey of recent developments", J. Appl. Mech., ASME, 50(12), 953-962. https://doi.org/10.1115/1.3167208
  6. Fox, R. L. and Kapoor, M. P. (1968), "Rate of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
  7. Ghanem, R. G. and Spanos, P. D. (1991), Stochastic finite elements: A spectral approach, Springer-Verlag, New York.
  8. Lin, Y. K. (1976), Probabilistic theory of structural dynamics, McGraw-Hill, New York, N.Y.
  9. Lin, Y. K. (et al.) (1986), "Methods of stochastic structural dynamics", Struct. Safety, 3(3/4), 167-194. https://doi.org/10.1016/0167-4730(86)90003-2
  10. Liu, W. K., Belytschko, T. and Mani, A. (1985), "Probabilistic finite elements for transient analysis in nonlinear continua", Advances in Aerospace Structural Analysis AD-09, Burnside and Parr, eds. ASME. New York, N.Y. 9-14.
  11. Liu, W. K. Belytschko, T. and Mani, A. (1986a), "Probabilistic finite element for non-linear structural dynamics", Comput. Methods Appl. Mech. Engrg., 56(1), 61-81. https://doi.org/10.1016/0045-7825(86)90136-2
  12. Liu, W. K., Belytschko, T. and Mani, A. (1986b), "Random field finite element, Int. J. Numer. Methods Engrg., 23(10), 1831-1845. https://doi.org/10.1002/nme.1620231004
  13. Roberts, J. B. (1984), "Techniques for nonlinear random vibration problems", Shock Vib. Dig., 16(2), 3-14.
  14. Roberts, J. B. and Spanos, P. D. (1990), Random vibration and statistical linearization, John Wiley & Sons, New York.
  15. Shinozuka, M. and Astill, C. J. (1972), "Random eigenvalue problem in structural analysis", AIAA J., 10(4), 456-462. https://doi.org/10.2514/3.50119
  16. To, C.W.S. (1984), "The response of nonlinear structures to random excitation", Shock Vib. Dig., 16(1), 13-33.
  17. To, C. W. S. (1987), "Random vibration of nonlinear system", Shock Vib. Dig., 19(3), 3-9.
  18. To, C. W. S. (1986), "The stochastic central difference method in structural dynamics", Computers and Structures, 23, 813-818. https://doi.org/10.1016/0045-7949(86)90250-6
  19. Vanmarcke, E. H. (1977), "Probabilistic modeling of soil profiles", J. Geotech. Engrg. Div., ASCE, 103(11), 1227-1246.
  20. Vanmarcke, E. H. (1983a), "Stochastic finite element analysis of simple beams", J. Engrg. Mech., ASCE, 109(5), 1203-1214. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:5(1203)
  21. Vanmarcke, E. H. (1983b), Random fields, The MIT Press, Cambridge, Mass.
  22. Vanmarcke, E. H., et al. (1986), "Random fields and stochastic finite elements", Struct. Safety, 3(3/4), 143-166. https://doi.org/10.1016/0167-4730(86)90002-0
  23. Zhang, S. W. and Zhao, H. H. (1992), "Effects of time step in stochastic central difference method", Journal of Sound and Vibration, 159(1), 182-188. https://doi.org/10.1016/0022-460X(92)90458-A
  24. Zhang, S. W., Ellingwood, B. R., Corotis, R. and Zhang, J. (1994), Direct Integration and Discretization of Continuous White Noise for MDOF Nonlinear System, Second Biennial European Joint Conference on Engineering Systems Design and Analysis, London, England.

Cited by

  1. Linearized perturbation method for stochastic analysis of a rill erosion model vol.200, pp.1, 2008, https://doi.org/10.1016/j.amc.2006.12.089
  2. A Partition Expansion Method for Nonlinear Response Analysis of Stochastic Dynamic Systems With Local Nonlinearity vol.8, pp.3, 2013, https://doi.org/10.1115/1.4023163
  3. Numerical analysis of dynamic stability under random excitation vol.24, pp.4, 2002, https://doi.org/10.1016/S0141-0296(01)00114-6