References
- Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for vibration of orthotropic homogeneous and laminated rectangular plates", J. Appl. Mech., 51, pp. 107-113. https://doi.org/10.1115/1.3167552
- Bogner, F. K., Fox, R. L. and Schmit, L. A. (1966), "The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas", Proc. Conf. Matrix Methods in Structural Mech. AFFDL-TR-66-80. Wright-Patterson A.F.B., Ohio (October, 1966).
- Kant, T. and Pandya, B. N. (1988), "A simple finite element formulation of a higher order theory for unsymmetrically laminated plates", Composite Structures, 9, pp. 215-246. https://doi.org/10.1016/0263-8223(88)90015-3
- Librescu, L. and Khdeir, A. A. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher order theory-Part I", 7, pp. 189-213.
- Lim, S. P., Lee, K. H., Chow, S. T. and Santhilnathan, N. R. (1988), "Linear and nonlinear bending of shear deformable plates", Computers and Structures, 30, pp. 945-952. https://doi.org/10.1016/0045-7949(88)90132-0
- Lo, K. H., Chirstensen, R. M. and Wu, E. M. (1977a), "A higher order theory of plate deformation, Part I: Homogeneous plates", J. Appl. Mech., 44, pp. 663-668. https://doi.org/10.1115/1.3424154
- Lo, K. H., Chirstensen, R. M. and Wu, E. M. (1977b), "A higher order theory of plate deformation, Part II: Laminated plates", J. Appl. Mech., 44, pp. 669-676. https://doi.org/10.1115/1.3424155
- Mindlin, R. D. (1951), "Influence of rotatory inertia and shear on the flexural motion of isotropic, elastic plates", J. Appl. Mech., 18 (TRANS ASME 73), A31.
- Noor, A. K. and Burton, W. S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), pp. 1-12. https://doi.org/10.1115/1.3152418
- Pagano, N. J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J Composite Materials, 4, pp. 20-34. https://doi.org/10.1177/002199837000400102
- Pagano, N. J. and Hatifield, S. J. (1972), "Elastic behavior of multilayered bidirectional composites", AIAA Journal. 10(7), pp. 931-933. https://doi.org/10.2514/3.50249
- Putcha, N. S. and Reddy, J. N. (1986), "A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates", Computers and Structures, 22, pp. 529-538. https://doi.org/10.1016/0045-7949(86)90002-7
- Reddy, J. N. (1984), "Refined higher-order theory for laminated composite plates", J. Appl. Mech., 51, pp. 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J. N. (1990), "A general non-linear third order theory of plates with moderate thickness", Int. J. Nonlinear Mech., 25, pp. 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
- Reddy, J. N. and Phan, N. D. (1985), "Stability and Vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound and Vibration, 98, pp. 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
- Reissner, E. (1985), "Reflection on the theory of elastic plates", Appl. Mech. Rev., 38(4), pp. 1453-1464. https://doi.org/10.1115/1.3143699
- Srinivas, S. and Rao, A. K. (1970), "Bending vibration and buckling of simply-supported thick orthotropic rectangular plates", Int. J Solids and Structures, 6, pp. 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4
Cited by
- On a Four-Node Quadrilateral Plate for Laminated Composites vol.14, pp.12, 2017, https://doi.org/10.1590/1679-78253663
- A serendipity plate element free of modeling deficiencies for the analysis of laminated composites vol.154, 2016, https://doi.org/10.1016/j.compstruct.2016.07.042
- Identification and elimination of parasitic shear in a laminated composite beam finite element vol.37, pp.8, 2006, https://doi.org/10.1016/j.advengsoft.2005.11.001
- A laminated composite plate finite element a-priori corrected for locking vol.28, pp.5, 2008, https://doi.org/10.12989/sem.2008.28.5.603