DOI QR코드

DOI QR Code

Transition membrane elements with drilling freedom for local mesh refinements

  • Choi, Chang-Koon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Wan-Hoon (Department of Civil Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1995.01.25

Abstract

A transition membrane element designated as CLM which has variable mid-side nodes with drilling freedoms has been presented in this paper. The functional for the linear problem, in which the drilling rotations are introduced as independent variables, has been formulated. The transition elements with variable side nodes can be efficiently used in the local mesh refinement for the in-plane structures, which have stress concentrations. A modified Gaussian quadrature is needed to be adopted to evaluate the stiffness matrices of these transition elements mainly due to the slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the new transition elements developed in this study.

Keywords

References

  1. Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comp. Struct., 19(1-8).
  2. Allman, D.J. (1988), "A quadrilateral finite element including vertex rotations for plane elasticity problem", Int. J. Numer. Methods Eng., 26, 717-739. https://doi.org/10.1002/nme.1620260314
  3. Amara, M.and Thomas, J.M. (1979), "Equilibrium finite element for the linear elastic problem", Numer. Math., 33, 367-383. https://doi.org/10.1007/BF01399320
  4. Aminpour, M.A. (1992), "An assumed-stress Hybrid 4-node shell element with drilling degress of freedom", Int. J. Numer. Methods Eng., 33, 19-38. https://doi.org/10.1002/nme.1620330103
  5. Atluri, S.N. (1980), "On some new general and complementary energy principles for the rate problems of finite strain, classical elastoplastity", J. Struct. Mech., 8, 61-92. https://doi.org/10.1080/03601218008907353
  6. Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, New Jersey.
  7. Bergan, P.G.and Fellipa, C.A. (1985), "A triangular membrane element with rotational degress of freedom", Comp. Methods Appl. Mech., 50, 25-60. https://doi.org/10.1016/0045-7825(85)90113-6
  8. Choi, C.K. and Park, Y.M. (1989), "Nonconforming transition plate bending elements with variable mid-side nodes", Computers and Structures, An International Journal, 32(2).
  9. Choi, C.K. and Park, Y.M., Seo, J.W. and Lee, W.H. (1989), "Transition elements in plate/shell problems", Proceedings of the Fourth Internal Conference and Exhibition on Civil and Structural Engineering Computing (CIVIL-COMP 89), London, England, Sept. 19-24.
  10. Choi, C.K. and Park, Y.M. (1992), "Transition plate bending elements for compatible mesh gradation", J. Eng. Mech. ASCE, 118(2).
  11. Choi, C.K., Kim, S.H. and Lee, W.H. (1992), "Non-conforming plate shell elements" proceedings of the International Conference on Education, Practice and Promotion of Computational Methods in Engineering using Small Computers, Dalian, China, 30 July-2 August.
  12. Choi, C.K. and Kim, S.H. (1992), "Improvement of quadratic finite element for Mindlin plate bending", Int. J. Num. Meth. Eng., 34(1).
  13. Choi, C.K. and Lee, N.H. (1993), "Three dimensional transition solid elements for adaptive mesh gradation", Structural Engineering and Mechanics, 1(1)
  14. Choi, C.K. and Paik, J.G. (1994)," An efficient four node degenerated shell element based on the assumed covariant strain", Structural Engineering and Mechanics, 2(1).
  15. Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comput. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
  16. Cook, R.D. (1987), "A plane hybrid element with rotational D.O.E and adjustable stiffness", Int. J. Numer. Methods Eng., 24, 1499-1508. https://doi.org/10.1002/nme.1620240807
  17. Cook R.D. (1974)," Improved two-dimensional finte element", J. Struct. Div. ASCE, 100, 1851-1865.
  18. de Veubeke, F.B. (1972)," A new variational principle for finite elastic displacements", Int. J. Eng. Sci., 10, 745-763. https://doi.org/10.1016/0020-7225(72)90079-1
  19. Evans, A., Marchant, M.J., Szmelter, J. and Weatherill, N.P. (1991), "Adaptivity for compressible flow computations using point embedding on 2-D structured multiblock meshes", Int. J. Numer. Methods. Eng., 32, 895-919. https://doi.org/10.1002/nme.1620320413
  20. Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid," Int. J. Num. Meth. Engng., 12, 35-45. https://doi.org/10.1002/nme.1620120104
  21. Herrmann, L.R.(1983), "Mixed finite elements for couple-stress analysis", Hybrid and Mixed F.E.M., Ed. by S.N. Atluri, R.H. Gallagher and O.C. Zienkiewicz, Wiley, New York.
  22. Hughes, T.J.R. (1987), The Finite Element Method-Linear static and dynamic finite element analysis, Prentice-Hall, New Jersey.
  23. Hughes, T.J.R. and Brezzi, F. (1989), "On drilling degrees of freedom", Comp. Methods Appl. Mech. Eng., 72, 105-121. https://doi.org/10.1016/0045-7825(89)90124-2
  24. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
  25. Ibrahimbegovic, A. (1990), "A novel membrane finite element with an enhanced displacement interpolation", Finite Elements in Analysis and Design, 7, 167-179. https://doi.org/10.1016/0168-874X(90)90008-3
  26. Iura, M. and Atluri, S.N. (1992), "Formulation of a membrane finite element with drilling degrees of freedom", Comput. Mech., 9, 417-428. https://doi.org/10.1007/BF00364007
  27. Lee, S.C. and Yoo, C.H. (1988), "A novel shell element including in-plane torque effect", Comput. Struct., 28, 505-522. https://doi.org/10.1016/0045-7949(88)90024-7
  28. MacNeal, R.H.and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comput. Struct., 28,75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  29. Naghdi, P.M. (1964), "On a variational theorem in elasticity and its application to shell theory", J. Appl. Mech., 31, 647-653. https://doi.org/10.1115/1.3629726
  30. Reissner, E. (1965), "A note on variational principles in elasticity", Int. J. Solids Struct., 1, 93-95. https://doi.org/10.1016/0020-7683(65)90018-1
  31. Timoshenko, S. and Goodier, J.N. (1951), Theory of Elasticity, McGraw-Hill, New York.
  32. Wilson, E.L. (1974), "The static condensation algorithm", Int. J. Numer. Methods Eng., 8, 199-203.
  33. Yunus, S.M. (1988), "A study of different hybrid elements with and without rotational D.O.F. for plane stress/plane strain problem", Comput. Struct., 30, 1127-1133. https://doi.org/10.1016/0045-7949(88)90155-1
  34. Yunus, S.M., Saigal, S. and Cook, R.D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Methods Eng., 28, 785-800. https://doi.org/10.1002/nme.1620280405
  35. Yunus, S.M., Pawlak, T.P. and Wheeler, M.J. (1990), "Application of the Zienkiewicz-Zhuerror estimator for plate and shell analysis", Int. J. Numer. Methods Eng., 29, 1281-1298. https://doi.org/10.1002/nme.1620290612
  36. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method: Basic formulation and Linear Problems, I, McGraw-Hill, London.
  37. Zhu, J.Z., Zienkiewicz, O.C. and Wu, J. (1991), "A new approach to the development of automatic quadrilateral mesh generation", Int. J. Numer. Methods Eng., 32, 849-866. https://doi.org/10.1002/nme.1620320411

Cited by

  1. Nonconforming Variable-Node Axisymmetric Solid Element vol.130, pp.5, 2004, https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(578)
  2. A refined 5-node plate bending element based on Reissner-Mindlin theory vol.23, pp.5, 2006, https://doi.org/10.1002/cnm.914
  3. Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements vol.11, pp.1, 2001, https://doi.org/10.12989/sem.2001.11.1.105
  4. Finite element techniques for wind engineering vol.81, pp.1-3, 1999, https://doi.org/10.1016/S0167-6105(99)00010-0
  5. Conforming and nonconforming transition plate bending elements for an adaptive h-refinement vol.28, pp.1, 1997, https://doi.org/10.1016/S0263-8231(97)00007-4
  6. Two-dimensional nonconforming finite elements: A state-of-the-art vol.6, pp.1, 1998, https://doi.org/10.12989/sem.1998.6.1.041
  7. A new quadrilateral 5-node non-conforming membrane element with drilling DOF vol.14, pp.6, 2002, https://doi.org/10.12989/sem.2002.14.6.699
  8. Direct modification for non-conforming elements with drilling DOF vol.55, pp.12, 2002, https://doi.org/10.1002/nme.550
  9. Versatile Variable-Node Flat-Shell Element vol.122, pp.5, 1996, https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
  10. Finite element linear and nonlinear, static and dynamic analysis of structural elements: a bibliography (1992‐1995) vol.14, pp.4, 1997, https://doi.org/10.1108/02644409710178494
  11. Variable-node non-conforming membrane elements vol.16, pp.4, 2003, https://doi.org/10.12989/sem.2003.16.4.479
  12. Variable-node axisymmetric solid element and its application to adaptive mesh refinement vol.11, pp.4, 2001, https://doi.org/10.12989/sem.2001.11.4.443
  13. Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom vol.4, pp.5, 1996, https://doi.org/10.12989/sem.1996.4.5.569
  14. Adaptive finite element wind analysis with mesh refinement and recovery vol.1, pp.1, 1998, https://doi.org/10.12989/was.1998.1.1.111