DOI QR코드

DOI QR Code

Vibration frequencies for elliptical and semi-elliptical Mindlin plates

  • Wang, C.M. (Department of Civil Engineering, National University of Singapore) ;
  • Xiang, Y. (Department of Civil Engineering, The University of Queensland) ;
  • Kitipornchai, S. (Department of Civil Engineering, The University of Queensland)
  • Published : 1995.01.25

Abstract

This paper presents new frequency results for elliptical and semi-elliptical Mindlin plates of various aspect ratios, thicknesses and boundary conditions. The results were obtained using the recently developed computerized Rayleigh-Ritz method for thick plate analysis. For simply supported elliptical plates, it is proposed that the penalty function method be used to enforce the condition of zero rotation of the midplane normal in the tangent plane to the plate boundary.

Keywords

References

  1. Beres, D.P. (1974), "Vibration analysis of a completely free elliptical plate", J. Sound and Vibration, 34(3), 441-443. https://doi.org/10.1016/S0022-460X(74)80322-6
  2. Callahan, W.R. (1964), "Flexural vibrations of elliptical plates when transverse shear and rotary inertia are considered", J. Acoust. Soc. of America, 36(5), 823-829. https://doi.org/10.1121/1.1919091
  3. DeCapua, N.J.and Sun, B.C. (1972), "Transverse vibration of a class of orthotropic plates", J. Appl. Mech. ASME, 39, 613-615. https://doi.org/10.1115/1.3422735
  4. Harris, G.Z. and Mansfield, E.H. (1967), " On the large-deflection vibration of elastic plates", Phil. Trans. R Soc. 261(A1122), 289-343. https://doi.org/10.1098/rsta.1967.0005
  5. Leissa, A.W. (1967), "Vibration of a simply-supported elliptical plate", J. Sound and Vibration, 6, 145-148. https://doi.org/10.1016/0022-460X(67)90166-6
  6. Liew, K.M. (1990), "The development of 2-D orthogonal polynomials for vibration of plates", Ph.D. Thesis, National University of Singapore.
  7. Narita, Y. (1985), "Natural frequencies of free, orthotropic elliptical plates", J. Sound and Vibration, 100(1), 83-89. https://doi.org/10.1016/0022-460X(85)90344-X
  8. Nayfeh, A.H., Mook, D.T., Lobitz, D.W., Sridhar, S. (1976), Vibrations of nearly annular and circular plates, J. Sound and Vibration, 47(1), pp.75-84. https://doi.org/10.1016/0022-460X(76)90408-9
  9. Huang, H.C. (1989), Static and Dynamic Analysis of Plates and Shells, Springer, Berlin.
  10. lrie, T., Yamada, G. and Aomura, S. (1980), "Natural frequencies of Mindlin circular plates", J.Appl. Mech. ASME, 47(3), 652-655. https://doi.org/10.1115/1.3153748
  11. Kitipornchai, S., Liew, K. M., Xiang, Y. and Wang, C.M. (1993), "Free vibration of isosceles triangular Mindlin plates", Int. J. Mech. Sci., 35(2), 89-102. https://doi.org/10.1016/0020-7403(93)90068-6
  12. McNitt, R.P. (1962), "Free vibration of a damped elliptical plate", Journal of Aerospace Science, 29, 1124-1125.
  13. Pavlik, B.Z. (1937), Phys., 107, 458-462. https://doi.org/10.1007/BF01339250
  14. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. ASME, 12, 69-76.
  15. Sato, K. (1971), " Free flexural vibrations of an elliptical plate with simply supported edges, J. Acoust. Soc. of America, 52(3), 919-922.
  16. Sato, K. (1973), "Free-flexural vibrations of an elliptical plate with free edge", J. Acoust. Soc. of America, 54(2), 547-550. https://doi.org/10.1121/1.1913618
  17. Sato, K (1976), "Free-flexural vibrations of an elliptical plate with edge restrained elastically", Bulletin of the Japan Soc. of Mech. Engineers, 19, 260-264. https://doi.org/10.1299/jsme1958.19.260
  18. Shibaoka, Y. (1956), "On the transverse vibration of an elliptical plate with clamped edge", Journal of the Physical Society of Japan, 11, 797-803. https://doi.org/10.1143/JPSJ.11.797
  19. Waller, M.D. (1950), "Vibration of free elliptical plates", Proceedings of the Physical Society (London). Series B, 63, 451-455. https://doi.org/10.1088/0370-1301/63/6/307
  20. Wang, C.M., Wang, L. and Liew, K.M. (1994), "Vibration and buckling of super-elliptical plates", J. Sound and Vibration, 171(3), 301-314. https://doi.org/10.1006/jsvi.1994.1122
  21. Wang, C.M., Liew, K.M.;Xiang, Y. and Kitipornchai, S. (1993), "Buckling of rectangular Mindlin plates with internal line supports", Int. J. Solids Struct., 30(1), 1-17. https://doi.org/10.1016/0020-7683(93)90129-U
  22. Wolfram, S. (1991), Mathematica-A system for doing mathematics by computer, Addison-Wesley, California, U.S.A.
  23. Xiang, Y., Wang, C.M., Liew, K.M. and Kitipornchai, S. (1993), 'Mindlin plate buckling with prebuckling in-plane deformation", J. Engng. Mech., ASCE, 119(1), 1-18. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:1(1)

Cited by

  1. Vibration Analysis of Shear-deformable Circular and Elliptical Laminated Composite Plates. vol.45, pp.1, 2002, https://doi.org/10.1299/jsmec.45.113
  2. Non-linear free vibration of elliptic sector plates by a curved triangular p-element vol.48, pp.4-5, 2010, https://doi.org/10.1016/j.tws.2009.12.001
  3. Free transverse vibration of shear deformable super-elliptical plates vol.24, pp.4, 2017, https://doi.org/10.12989/was.2017.24.4.307