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ABSTRACT

The effects of random errors m array weights and sensor positions on the performance of a Line거Hy constrained 

linear sensor array is analyzed in a weight vector space. It is observed that a nonorthogonality exists between an 

optimum weight vector and the steering vector of an interference direction due to random errors. A novel approach 

to improving the nulling performance by compensating for the nonorthogonality is proposed. Computer simulation 

results are presented.

요 약

어레이 계수나 센서 위치에 일어나는 불규칙 오류가 선형조건이 주어진 센서어레이의 성능에 미치는 영향을 계수 벡터 공 

간에人T 분석한다. 불규칙 오류에 의하여 최적계수 벡터와 방해신호 방향의 벡터사이에 비직교성이 존재한다는 것이 발견되 

었다. 이비직교성을 보상함으로써 영점호｝ 성능을 개선하는 방법이 제안되었다. 컴퓨터 살험결과를 제시하였다.

I • Introd 니 ction

The random variations of array weight, element 

(i.e., sensor) position, or incoming signal wavefront 

generally result in degradation of array perform

ance. If there exists no random variation in array 

parameters, the array performance will be the 

same as that of an ideal array [1]. In the past 

three decades, the effects of variations in array 

parameters on the array performance have been 

widely investigated in the literature [2 5〕. It was 

shown that in an arbitrary array with directional 

elements which is subject to random variations of 

array weight and element position, the average 

power pattern results in a nominal power pattern 

(i.e., without random variations) superimposed 

by a power level which is proportional to the 

power pattern of directional elements. Thus the 

proportionality approximately depends on the 

product of the sum of variances of relevant errors 

and the sum of the squared average weights [2]. 

Constrained power minimization was discussed in 

a beamformer subject to random variations of 
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input signal wavefront [3]. The average output 

power was shown to be the sum of the nominal 

power and the variances of the random errors of 

amplitude and phase multiplied by the total 

squared value of average weights. Even though 

the performance of randomly perturbed arrays 

has been widely investigated, the problem of re

ducing the degradation of array performance due 

to random errors in eliminating the interference 

signals has received relatively little attention.

In this paper, the effects of the random errors 

on the nulling performance of a linearly con

strained narrowband linear array in the presence 

of random variations in array weight and element 

position are discussed and analyzed m the weight 

vector space. A novel approach to improving the 

array performance by compensating for the effect 

of random variations is proposed. Without loss of 

generality, it is assumed that: 나le average element 

positions are confined to a one-dimensional space 

；the directions of incoming signals are confined 

to a two-dimensional space; and the element 

positions vary randomly in a three-dimensional 

space.

Consider a narrowband linear array with N 

equispaced isotropic elements on the x-axis in a 

three-dimensional space as shown m Fig. 1 m 

which each element is followed by a complex 

weight. It is assumed that the array is subject to 

independent random variations of array weight 

and element position. Then the perturbed array 

weight vector ••-糾-一]卩 and element

position vector b = bx …奴—J can be 

represented as

w = c-hx ⑴

and

b = d + p, (2)

respectively, where

c = …"一*, (3)

%= [ %。…奴一1卩， (4)

d=[0du,…uj, (5)

and

p\ …p.v-ir. (6)

In (1)-(6), X and p are 나io random error vectors

for array weight and element position, respect- 

iv이y, cn are the average values of perturbed com- 

plex weights wn, nd ux denote the average element 

positions, d is the spacing between neighboring 

이ements, ux is a unit vector on the 心axis, Xn are 

independent complex random variables of weight 

errors with mean zero, pn are the position error 

vectors whose cartesian components are denoted 

by random variables pnx, Pny, and p醇,and n is 

index for vector component. It is to be noted that 

b, d, and p are N x3 matricies.

The nominal array factor of a narrowband linear 

array which is free of random variations is given 

by

H^u) =" c, (7) 
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where p is a steering vector given by

p I 1 ■■■ ^y,fi v 山叮'、 SV

" = cos 6, 6 is the angle from the array axis, k = 

2띠X, A is the wavelength of incoming signals, j = 

、/ —1 , and T and H denote the transpose and 

complex conjugate transpose, respectively. It can 

be shown that the power of the nominal array 

factor is expressed as

\Hn(u)\2 = cH Pc, (9)

where P is the autocorrelation matrix of p.

If random variations in array parameters exist 

due to array imperfections resulting from manu

facturing process or external circumstances [4, 5], 

the actual array performance becomes different 

from that originally designed. To analyze the 

effects of the random variations with respect to 

array weight and element position, we will inves

tigate the array factor and corresponding power 

response in the presence of random variations.

II. Effects of Random Errors

The array factor affected by random errors can 

be expresed as

H(u) =prH w, (10)

where pr is a perturbed steering vector given by

p[ e가次、九-”2) 。가xA~«2)

...仑丿妇 E-i 以“ + . “坤十/，,、-e：、i 一*"]  (]])

If the distribution of the position error vectors is 

assumed to be spherically symmetric, jointly normal, 

independent , and identical for all elements, the 

average of the perturbed array factor in (10) is 

given by 12]

F\ v -L (12)

/!+沪

where

＜泠=。：：-1, (13)

and er 2 is the variance of pc, c = *,  y, z.

It can be shown that the average output power 

is given by

\H(u)\2]=cH Pc, (14)

where

- 1
尸=一二二苛(" + P)， (15)

1十3-

户=裂+潍+芸或2, (16)

。注 = ＞이이% for 0 M 处 M *V-1, (17)

I is the identity matrix, and ＜TZn2 is the variance of 

Xn. The r in (16) will be called the error factor in 

this paper because it comprehensively represents 

the power of relevant errors. If a desired signal is 

incident on a randomly perturbed sensor array 

with interference signals whose power is to be 

nulled (i.e., minimized), the nulling performance 

will be different from that with no random errors 

as shown in the above analysis. In the following 

sections, the array performance in minimizing the 

interference power with a unit gain constraint in 

the look direction (i.e,, the direction of a desired 

signal) will be discussed.

ID. Performance with Sinusoidal Interference

If a smsoidal interference is coming from a 

direction different from that of a desired sinusoid, 

an optimum weight vector that yields a minimum 

power at the interference direction with a unit 

response at the look direction can be obtained by 

solving the following constrained optimization 
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problem.

min E[ \H(u) I'2J

c (18)

subject to ElpriH w} = 1,

where pre is a perturbed steering vector for the 

look direction. It can be shown that the constraint 

in (18) is equivalent to

PcH s/r+6\ (19)

where pc is a nominal steering vector for the look 

direction. Using the method of Lagrange multipliers 

[6], the optimum weight vector is given by

vT+^2 p 1 pc

5 =------ _------- (20)
p/P 1 Pc

Evaluating the inverse of P using a matrix inver

sion lemma [7], we have

S上W (—7), 
r

where

z N h
产，

(21)

(22)

Q is a normalized eigenvector of P corresponding 

to an eigenvalue of (N + ,)/(l + 异)，i.e., Q = p/ 

、区、Substituting (21) into (20), we have 나饵 

optimum weight vector as

x/l+<5T(A'+r)

= W再刁二石，云"(23)

Since the J is a nonorthogonal projection matrix 

for nonzero r, the vector pc is projected onto the 

vector p nonorthogonally so that the optimum 

weight vector is not orthogonal to p. Thus, the 

nulling performance is inversely proportional to 

the extent of nonorthogonality of J in such a way 

that the nulling performance improves as the ran- 

dom error factor r decreases or the number of 

elements N increases. It can be shown that if p 

and pc are orthogonal, the array response at the 

interference direction is not affected by the reb 

evant random errors in an average sense. This 

implies that p is on a subspace Sn which is parallel 

to the constrained surface Sc given by

S = {c + q : cE $,}, (24)

where ct is a translation vector between S, and S 

and is 융iven by

Ct = (25)

It is to be noted that the ct becomes an optimum 

weight vector whenpc andp are orthogonal. The 

geometry in the weight vector space is shown in 

Fig. 2.

To reduce the effects of the random errors on 

the array performance, we form a weight vector 

translated by 卩z on the constrained surface, i.e.,

% = (26)

z = c,,pi-ct (27)

and a seal factor // is a positive real number. Solving 

the following orthogonal condition for 卩

PH co = 0, (28)

we get a scale factor which yields a weight vector 

which is orthogonal to p as

Ny
心云- (29)

Substituting (29) into (26), we find the corre

sponding weight vector as

[NI-P)pc

c。= X不二布矛房卩 ' (30) 
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which is the optimum weight vector orthogonal 

to the steering vector p and thus yields the best 

nulling performance m the presence ul random 

errors. It turns out that c“ is shifted by 四z to 

become c响 on the constranied surface due to the 

nonorthogonal projection. Thus to compensate for 

the random errors, we shift the c0 by 呻 to the 

direction opposite to cnp!. Therefore, the compe

nsated weight vector is given by

% =门+卩。2

or

C°= V시 2 

(31)

(32)

and upper limits of the angular region are 的 and uu, 

respectively, the optirnum weight sector can be 

found by solving the fol Sowing constrained 

optimization problem.

min E [「3 |//(w) |z du~\

c J七

(33) 

subject ot PCH c~、/1 + S%

It can be shown that

E [ ^Uu \H{u)\2 du~\= cH P c, (34)

where

P ^url + P ), (35)

If cc is set as an actual array weight, the best 

nulling performance will be achieved.

Aw fox n = m

Fig. 2 Geometry in the weight vector space.

jk(n~m)d

(36)

for m

1 <.n, m<. N,

and △跪= Assuming that the angular region

Au is reasonably narrow, P can be approximated

as

声 쓰/"方% (37)

where p is a steering vector which lies between 

the two steering vectors corresponding to the two 

limits of the angular region. The p is given by

[p £ = a” 가'gS+M、"'. (38)

It can be shown that the optimum weight vector 

is given by

IV. Performance with Narrowband Interference

To eliminate a spatially narrowband interference, 

we need to form a narrowband null around the 

angular region of the interference. If the lower

、/讦汗(N + Q

:V(N +尸)-\p Hpe\2

where

(39)
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J ― - ----- q q “ (40)

and is a normalized eigenvector of P corre

sponding to an eigenvalue of △那。V + 并)/ (l + <52), 

Also, the compensated weight vector is given by

-~"二"新i一 (41)

If cc is set as a wight vector, a narrowband null 

with a deeper depth will be achieved compared to 

that by copt. It is to be noted that a set of point 

nulls may be synthesized to find an equivalent 

optimum weight vector for the narrowband case.

V. Simulation Results

For the case of sinusoidal interference, a 3- 

element linear array is experimented with 

interelement spacing half the wavelength for 

incoming sign기s. The magnitude response at the 

look direction is assumed to be 1/ \/l + ^2 for 

convenience so that the nominal magnitude response 

is one at the look direction. It is assumed that the 

incident angles of the desired and interference 

signals are 90° and 60° from the array axis, 

respectively. Then the optimum weight vector is 

given by

-3 +户 + j "
2危 (42)

_ 3 + r-；.

_ 1 
财产3车券

The best optimum and compensated weight vectors 

are given by

]r 3ty_
2

-3 —7 _

(43)

and

-3-r+j-
2一 尸 ， (44)

-3~r~j - 

respectively. The beam pattern for a broadside 

uniform linear array free of random errors is 

shown in Fig. 3. The beam pattern wi比 error 

factor r = 0.1 is 아lown in Fig. 4 in which the 

power response at 60° is -38.8 dB. If the errors are 

compensated by using the cc as the actual weight, 

the resulting beam pattern is shown in Fig. 5 sense 

which corresponds to the pattern by c0. It is obse

rved that the power response at the interference 

direction is -149.5 dB which is about 110 dB lower 

than that for the uncompensated array.

A 15-element linear array is employed for a 

narrowband interference whose angular region is 

assumed to be from 59.5° to 60.5°. It is ass니med 

that the error factor r is 0.001. Figs. 6(a) 거nd 6 

(b) display the beam patterns by the optimum 

and compensated weight vectors respectively. 

From the figures, it is not easy to compare the 

nulling performances of the two weight vectors. 

To find out the difference in nulling performance 

more exactly, the beam patterns around 60° are 

shown in Figs. 7(a) and 7(b). It is observed that 

the compensated array yields a deeper and narrower 

null around 60° than the uncompensated one does.

Fig. 3 Beam pattern for a 3-element broadside un迁orm 

linear array.
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Fig. 4 Beam pattern with a point null at 60° 

and 戶= 0.1.

Fig. 6 Beam patterns of a 15-element linear array for 

narowband interference with r = 0.001.

Fig. 5 Beam pattern by the best optimum weight vec

tor.

Fig. 7 Beam patterns around 60°.

VI. Conclusions

Linearly constrained optimization problem for a 

narrowband linear array which is subject to random 

variations in array weight and element position 

was discussed. The nulling performance was 

analyzed in the weight vector space with respect 

to sinusoidal and narrowband interference signals. 

It was found that a nonorthogonality condition 

exists between the optimum weight vector and 

the steering vector of the interference direction 

due to the relevant random errors. A novel 
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approach to red니cing the effects of random errors 

by compensating for the nonorthogonality was 

proposed to improve the array performance. It 

was shown that the nulling performance at the 

interference direction was remarkably improved 

with the compensated weight vector. The proposed 

approaches may be applied in practical sensor 

arrays to improve the performance in estimating a 

desired signal corrupted by undesired interferences 

in the presence of random errors with respect to 

array weight and sensor position.
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