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ABSTRACT

The least mean fourth (LMF) adaptive algorithm is a stochastic gradient method that minimizes the error m the 

mean fourth sense. Despite its potential advantages, the algorithm is much less popular than the conventional least 

mean square (LMS) algorithm in practice. This seems partly because the analysis of the LMF algorithm is much 

more difficult than that of the LMS algorithm, and thus not much still has been known about the algorithm. In this 

paper, we explore the statistical convergence behavior of the LMF algorithm when the input to the adaptive filter is 

zero-mean, wide-sense stationary, and Gaussian. Under a system identification mode, a set of nonlinear evolution 

equations that characterizes the mean and mean-squared behavior of the algorithm is derived. A condition for the 

convergence is then found, and it turns out that the convergence of the LMF algorithm stnm이y depends on the 

사loice of initial conditions. Performances of the LMF algorithm are compared with those of the LMS algorithm. It 

is observed that the mean convergence of the LMF algorithm is much faster than that of the LMS algorithm when 

the two algorithms are designed to achieve the same steady-state mean-squared estimation error.

요 약

최소평균사승 적응알고리즘은 추정오차의 평균사승 값을 최소화하는 추정 경도방법 가운데 하나이다 알고리즘의 잠재적 

인 여러 장점에도 불구하고, 이 알고리즘은 현재 기존의 최소평균자승 알고리즘 보다 실제 적게 주목받고 있다. 그 이유는 

최소평균사승 알고리즘의 수렴특성에 관한 통계적 분석이 최소평균자승 알고리즘에 비해 매우 어렵고, 따라서 아직 알고리 

즘에 대해 모르는 부분이 많기 때문으로 보인다. 본 논문에서는 적응필터의 입력신호가 평균이 영이고 시불변 가우시안 랜 

덤신호일 경우 최소평균사승 적응알고리즘의 통계적인 수렴특성에 대하여 연구하였다 이를 위해, 시스템인지 모드에서 알 

고리즘의 평균 및 평균자승 특성을 나타내는 일련의 관계식을 유도하였다 그리고 알고리즘의 평균특성이 수렴하기 위한 조 

건을 찾았는데, 여기서 최소평균사승 적응알고리즘의 수렴특성이 초기치의 선택에 크게 좌우됨을 알 수 있었다 또한 최소 

평균사승 알고리즘의 성능을 기존의 최소평균자승 알고리즘과 실험적으로 비교하였고, 두개의 알고리즘이 정상상태에서 같 

은 값의 평균자승추정오차를 갖을 때 최소평균사승 알고리즘이 최소평균자승 알고리즘에 비해 매우 빠른 수렴속도를 갖을 

수 있음을 확인하였다.

이 논문은 1993년도 한국학술진흥재단의 공모과제 연구비에 의하여 연구되었음•

This paper was supported in part by Non-directed Research F니nd, Korea Research Fo니ndation, 1993.



Convergence Analysis of the Least Mean Fourth Adaptive .Algorithm 57

I. Introd니ction

The adaptive LMS algorithm [1」，L2j has rece

ived a great deal of attention during the last two 

decades and is now widely used in variety of ap

plications due to its simplicity and relative ease 

of analysis. The algorithm tries to minimize the 

mean-squared estimation error at each iteration. 

There exist, however, only a limited number of 

researches for adaptive filtering algorithms that 

are based on higher order error conditions (or non- 

mean-square error criteria) [3]-[7]. Despite the 

potential advantages, these algorithms are less 

popular than the conventional LMS algorithm in 

practice. This seems partly because the analysis 

of the higher order error based algorithms is much 

more d迁ficult, and thus not much still has been 

known about the algorithms.

The LMF adaptive algorithm is a special case 

for which the error function to be minimized is 

the mean of the estimation error to the fourth po

wer. This error function is a perfect convex func

tion of the filter coefficient vector, and therefore 

does not have local minima. Moreover, the LMF 

algorithm is intuitively appealing comparing to 

the LMS algorithm, since the estimation error dur

ing the early adaptation process is usually large 

so that the error to the higher power would im

prove the convergence speed, while the error dur

ing the steady-state is sufficiently small (sualy, 

if designed well) so that the error to the higher 

power would increase the precision.

Walach and Widrow [7] presented a convergen

ce analysis of the LMF algorithm, and compared 

its performances with the LMS algorithm under 

the “system identification mode”. They evaluated 

the relaxation time constants for the weights, 

and showed that the time constants in the weight 

r이axation process for the LMF algorithm is pro

portional to those for the LMS algorithm. By 

evaluating the ratio between the misadjustment 

of the LMS algorithm and that of the LMF algor 

ithm, they also showed that the LMF algorithm 

h저s substantially less noises m the filter coeffici 

ents than the conventional LMS algorithm for 

the same speed of convergence, except the case 

when the plant measurement noise of the un

known system has a Gaussian distribution. For 

the Gaussian plant noise, it was shown that the 

LMS algorithm outperforms the LMF algorithm. 

Conditions for the convergence of the mean and 

mean-squared behavior of the LMF algorithm 

were also derived. The results in [7] are, how

ever, somewhat restrictive since the analysis is 

limited to the simple case in which the filter coef

ficients are already close to the optimal values. 

The assumption sign迁icantly simplifies the analy

sis, but any information about the transient beha

vior of the algorithm can not be obtained.

In this paper, we explore the statistical conver

gence behavior of the LMF algorithm when the 

input to the adaptive filter is zero-mean, wide- 

sense stationary, and Gaussian. Under a system 

identification mode, a set of nonlinear evolution 

equations that characterizes the mean and mean- 

squared behavior of the algorithm is derived. 

Price's theorem[9] as well as the decomposition 

property of the Gaussian higher order moments 

into multiplications of the second moments are 

used as the main tools for the analysis.

Now, consider the problem of the system ident

ification as depicted in Figure 1, where d(n) and 

x(n) represent the primary and reference input 

signals, and emtn(n) and e(n) denote the measure

ment noise and the estimation error signals, re

spectively. The unknown plant to be identified is 

assumed to be linear and time invariant.

Let H(n) denote the adaptive filter coefficient 

vector of size N. Define the reference input vec

tor X(n) as

= [x{n\ x(w —1), r(w —AT+ 1)]r, (1)
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£(n)

Fig니re 1. Adaptive system identification model.

where [- ]7 denotes the transpose of [•]. The LMF 

algorithm under consideration updates the coef

ficient vector using

H(>z+1) =H3z) + 卩XS)以(第)， (2)

where 卩 is the adaptation step-size, and

e(n) ^=d(n) ~XT(n) H(n). (3)

As can be seen is (2) and (3), the LMF algori나im 

requires additionally only two more multiplications 

for each iteration comparing to the LMS algor

ithm.

In the next section, under a set of assumptions 

and a set of mild approximations, the nonlinear dif

ference equations that characterize the mean and 

mean-squared behavior of the filter coefficients 

and the mean-squared estimation error are de

rived. A condition for the mean convergence is 

also found.

D. Convergence Analysis

Before starting the analysis, let us define the 

following notations: Let Hopt denote the coefficient 

vector of the unknown system given by

Hgt = Rdx, (4)

where

Rxx = E{X(n) XT(n) }, (5)

Rdx = E{dM X(n)}, (6)

and E{•} denotes the statistical expectation of {•}. 

Also, define the coefficient misalignment vector 

V(n) as

VM =H3) -Hg (7)

and its autocorrelation matrix K(n) as

Kin) = E{V{n)VT(n)}. (8)

Using (7)in (2), we get

F(w + 1) +#X(経)^(m). (9)

The optimal estimation error 나lat is 나虻

same as the measurement noise in 나le system id

entification mode, is given by

etnin(n) =d(n) ~XT{n) Hopt. (10)

Combining(3), (7), and (10), it follows that

此)=emtn(n) -XT(n) V(n). (11)

Finally, let

a'iM =E{e2(n)} (12)

and

<5湖1 =厅{。哀卯(死)} (13)

denote the mean-squared estimation error and the 

minimum mean-squared estimation error (or the 

power of the measurement noise), respectively.

Convergence analysis of the LMF algorithm is 

much more complicated than that of the LMS al
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gorithm due to existence of the higher order error 

signal in the coefficient update equation. We ma 

ke the following assumptions to make t he analy 

sis mathematically more tractable :

Assumption 1 : d{n) and X{n) are zero-mean, wide- 

sense stationary, and jointly Gaus

sian random processes.

Assumption 2 : The input pair X(n)} at time 

n is independent of {d(k\ X(k)\ 

at time k, if n^k.

Assumption 3 : The measurement noise of 

the plant is also zero-mean, wide- 

sense stationary, and independent 

of and r(w).

A consequence of Assumption 1, which is of gre

at importance for the analysis, is that the esti

mation error e(n) given in (3) is also zero-mean 

and Gaussian when conditioned on the coefficient 

vector H(n) (or equivalently, on l7(w)). Assump

tion 2 is the commonly employed ^independence 

assumption” [8] and is valid if 卩 is chosen to be 

sufficiently small. One direct consequence of As

sumption 2 is that H(n) is independent of the in

put pair {d飯z), X0z)} since H(n) depends only on 

inputs at time and before. Note also that As

sumption 2 does not restrict the nature of the 

matrix Rxx, and should not be confused with the 

white signal assumption.

Now, taking the statistical expectation on both 

sides of (9) gives

EE + L)} = E{S)} + *{X3z)  (14)

The last expectation of (14) can be simplified us

ing the fact that for zero-mean and jointly Gaus

sian random variables and

E{x\ x]} = E{xix2} El ^2} ■ (15)

Thus, using (15) in conjunction with Assumption 

1. it follows that

E\X(n) e6{n)}^=E{E[X(n) e3(n) \

―\ V in) iE\ X\n} eM

二 3/-.:：仃]；，n} E \ e(n)\ I' (n i i :,

(16) 

where

a^-(n) = E{ e2(n) I V(n)}, , (17)

and from (11)

ElX(n)e(n)\VM}

=El Xln) lemin(n) -XT(n) F(w)] | Tz(w)}

=—RxxV^n). (18)

Note in (18) that we have made use of Assump

tion 2 as well as the orthogonality principle that 

is given by

E{X{n) emin(n)}^0\, (19)

where O.v is the null vector of size N. Substituting 

(17) and (18) in (16) yields

E{X(n) eA(n))^ ~3RXX E{^v(n)V(n)}

=-3^(w) RxxV(n). (20)

In (20), we have made use of an approximation as

V(n)}牝成(死)£(F(w)). (21)

Therefore, using (20) in (14), we have the mean 

behavior for the coefficient misalignment vector 

of the LMF algorithm as

E{V(n + l)}=[厶一3 卩赤3) Rxxl E{V(n)}, (22)

where L denotes the NXN identity matrix. This 

expression can be equivalently rewritten using 

the coefficient vector as

E田3 + 1)} 스 [厶一3) Rxx] E{H0z)} + 3“：3) Rdx.

(23)
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From (22), it is easy to show that the mean be

havior of the coefficient misalignment vector E 

；r(zz) ；■ converges to the zero vector (or equival- 

en나y, approaches Hopt) if the conver

gence parameter 吕 is selected to be

2
0 < < —---- , '\/n, (24)

3 n-max O c W

where XnJax represents the maximum eigenvalue of 

the matrix R\x. Notice, unfortunately, that there 

exists the time-varying function 夜3、) in the 니p- 

per bound for More restrictive but more suf

ficient condition for the convergence can be 

given by

2
E < ~苔------- / 2/ v ， (25)

maxltr/w)}

where max"%；(死)} denotes the maximum value of 

ajM for all n. Since (筮)is usually large at the 

beginning of adaptation processes, we can see 

that the convergence of the LMF algorithm st

rongly depends on the choice of initial conditions. 

It would be desirable to give the initial conditions 

such that the initial errors are kept as low as 

possible.

Recall that the condition for the mean conver^ 

gence of the LMF algorithm sought by Walach 

and Widrow [7] is given by 

仃*%) =救小 + 昌卩’(死)X(、n) X「(径

2
EV 3 七 (26)

。Mnax Qmin

However, this condition was obtained under the 

very wild assumption that the convergence has 

already taken place. The upper bound in (26) is 

much looser than that in (25) particularry during 

the early adaptation processes for

all n), implying 아lat for some initial values, the 

LMF algori나im may blow up. In fact, the con

dition in (26) is only a necessary condition for the 

me쇼n convergence of the LMF algorithm.

We next derive an expression for the mean-squ

ared estimation error Employing' (11) in

(12)yields

~2E{Vl\n) XM emi„W}. (27)

Here, qmin is obtained by using (10) in (13) so that

&成 = £■{成어)} - nipt Rdx, (28)

and by the independence assumption,

E{VTW X(，2)XTMVM} = tr{K(n) R”-}, (29)

where K(n) is defined in (8), and tr{-} denotes 

the trace of {-}. The last expectation of (27) be

comes zero by the independence assumption (As

sumption 2) as w시 1 as the orthogonality prin

ciple. It thus follows that

^M=^mtn + tr{K(n) Rxx}. (30)

Finally, we derive an expression for K(n) to com- 

plete the analysis. Substituting (9) in (8) leads to

K(死+ 1)="【(处)+“2e[x3z) (死)]

^E[_V(n) Xr(n)^3(w)]+//£[X(n) VT(n) e3(n)].

(31)

Here, using Assumptions 1 and 2, the second ex

pectation on the right-hand side (RHS) of (31) 

becomes

E[V{n) XT(n) e3(w)]

= E{V(n) E[Xl (n) e3{n) |V(死)]}

= 3E{VM E[XT(n) e(n)\VMl Ele2(n}\V(n)]}

=~3E{a^ (n) VM VT(n) RZ

a K(n) Rxx. (32)

In (32), we have made use of the result in (20) 

and the approximation as

V(n) VT{n))^ a* 、n) K(n). (33)
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In a similar way, the last expectation on the RHS 

of (31) leads to

E[XM V1 (n) es(n)] 스 一3犬(丸) Rxx K{n). (34)

In order to simplify the first expectation on the 

RHS of (31) any further, the following result will 

be used :

• Let %i, X2, and %3 be zero-mean, jointly Gaus

sian random variables with covariance matrix

R =

Hl H2 5

H2 恥L ^23

尸13 户33 03

Then, by Price's theorem [9] as well as the de

composition property of the Gaussian higher or

der moments into multiplications of the second 

moments, it follows

E { X2 X； } = 15 [ ri2 ^3 + 6 X13 戶 23 ] (35)

Now, since

E{XM Xr(n) ee(n)}^ E{E[X(n) X!\n)

(36)

using (35) and (18) in (36), it is not difficult to get

E{X(n) XT(n)ebM}

=15E [破「(?z)[。旨「(沥 R.xx 67?.y.y V(n} VJ{n) R\x ]!

숫 [片3) Rxx + 6 Rxx K3) Rxx ]. (37)

In (37), we have made use of another two appro

ximations that

Ehr歸 3z)} - (38)

and

E/卩 (处) RxxVW VTM Rm} 수 加) RxxKM Rxx.

(39)

Therefore, combirung (32), (34), and (37) with 

(31)、we obtain an expression for the second or

der I.y?havK)r of the coefficients of the LMF al

gorithm as

K(n +1) 주; K(沱) f w：(從) 丨 K(必 Rxx + RxxKln)、

+ 15 “2 勇(况Ix + 6 RxxRxxK(n)] Rxx .

(40)

ID. Experimental Results

Here, we present experimental results for whi

ch the LMF algorithm is used in identifying a lin

ear and time-invariant system to demonstrate the 

validity of o니r analysis. The reference input x(n) 

to the adaptive filter is modeled as a pseudoran

dom white Gaussian process with zero-mean and 

unit variance. The corresponding primary input d 

(n) is generated by processing x(n) through the 

linear and time-invariant FIR system wi比 seven 

coefficients given by

Hopt = L 0.1, 0.3, 0.5, 0.7, 0.5, 0.3, 0.1 ]r, (41)

Figure 2. Mean behavior of the coefficients,

(Only curves for the first four coefficients are 

displayed) : 1 ^simulation result, 2 = theoreti

cal result.
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Figure 3. Mean-squared behavior of the coefficients, tr 

{K(n)} in dB ; 1 = simulation result, 2 = theor

etical result.

Fig나re 4. Mean-squared estimation error, m dB :

1 = simulation result, 2 = theoretical result.

and then corrupting the system output using a 

zero-mean and white random sequence with vari

ance 0.01.

Figure 2 illustrates the empirical and theoreti

cal results for 나le mean behavior of the

first four adaptive filter coefficients, and Figures 

3 and 4 show those for the mean-squared behavior 

of the coefficients and for the mean-squared esti

mation error, respectably, Displayed in Figure 3 

are only the curves for the sum of all the diagonal 

elements of the matrix KM (i.e., for

convenience. In Figures 2-4, curves 1 and 2 rep

resent the empirical and theoretical results, re

spectively. The empirical results are obtained by 

averaging over 50 independent runs using 10,000 

samples each, and the convergence parameter 卩 

is chosen to be 0.02. It can be seen 나lat 나le 

theoretical results show a fairly good agreement 

with the empirical resets.

Next, we empirically compare the convergence 

speed of the LMF algori나im with that of the con

ventional LMS algorithm. The results are once 

again obtained by averaging over 50 independent 

runs with 10,000 samples, and the convergence 

parameter 卩lmf for the LMF algori나im is chosen 

to be 0.02. In order to perform a fair comparison, 

we select the convergence parameter "胳 for the 

LMS algori나im 0.0012 in such a way that the two

Figure 5. Mean-squared estimation error,(招3) in dB :

1 = LMF algorithm (印wf = 0.02), 2 = LMS 

algorithm (印&、= 0.0012).
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Fig나佗 6. Mean-squared behavior of the coefficients, tr 

\K{n}\ in dB ; 1 — LMF algorithm (“圍尸=。 

02h 2 —LMS algorithm ("必= 0.0012).

Figure 7. Mean behavior of the coefficients, E{H{n)} 

(Only curves for the first four coefficients are 

displayed) ：1 =LMF algorithm (用."= 0.02)、 

2 = LMS algorithm (山跡= 0.0012),

algorithms produce the same mean-squared esti 

uiation error in the steady state. Illustrated in 

Figures 5 and 6 are simulation curves of <y；(n) 

and tr{K(n')\ for both 나比 LMF and the LMS al- 

营。药나}m, respectively. We can see 다tat 아止 mean- 

squared behavior of the coefficients and the mean- 

squared estimation error of 난}。two algorithms in- 

deed approach the same value in the steady-state 

when the convergence parameters 卩成f and 口虾 

are selected to be 0.02 and 0.0012, respectively. 

However, the LMF •辻hm shows much faster

convergence than the LMS algm社hm in the me

an-squared sense. Now, Figure 7 displays the cor

responding mean behavior of the two 칬gorithg. 

It is observed that the mean convergence of the 

LMF algorithm is also much faster than that of 

나]。LMS algorithm when the two algorithms are 

designed to achieve the same steady-state mean

square error.

IV. Con지나si이1

In this paper, the statistical convergence analy

sis of the LMF algorithm is presented in 나坨 sys- 

tem identification mode. The wild assumption em

ployed in the previous work [7] is relaxed. In par- 

tic니ar, 바忧 transient behavior of 나]e LMF algor

ithm is investigated when the input signals are 

zero-mean, wide sense stationary, and Gaussian. 

Price's theorem [9] as well as 나招 decomposition 

property of the Gaussian higher order moments 

into multiplications of the second moments are 

used as the main tools for the analysis. A con

ation for the mean convergence is also found, 

and it turns out that 나忧 convergence of the LMF 

algor辻hm strongly depends on the choice of in

itial conditions. Computer simulations 아h)w that 

our theoretical results agree with simulation ones 

fairly well. Also observed is that the mean com 

vergence of the LMF algwi나im is much faster 

than that of the LMS aigori나im when the two 

기gorithms are designed to achieve 나冶 same steady-
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state mean-squared error. Moreover, through ex

tensive computer simulations, we have found that 

there are many other cases in which the LMF al 

gorithm outperforms the conventional LMS algor 

ithm from the viewpoints of the convergence 

speed as well as the precision.

We have, however, had difficulties in deriving 

exact expressions for the mean and mean-squared 

convergence of the LMF algorithm. As an alter

native, we have made use of the four approximat

ions as were in (21), (33), (38), and (39). Surely 

these approximations misleads our analytical re

sults to some extent. We are currently working on 

obtaining better results by removing the approxi

mations. As a future work, we will work on deriv

ing expressions for the steady-state responses and 

a condition on 卩 for the mean-squared conver

gence of the LMF algorithm, and also on making 

quantitative comparisons with the LMS algor

ithm.
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▲김 형 중(Hyung Jung Kim) 1970년 9월 25일 생

1993년 2월 : 한양대 학교 전 자공 

학과（공학사）

1993년 8월〜현재 : 한양대학원 전 

자공학과 석사과정 

※주관심분야: 적응 신호 처리, 

이동 통신, 음성 

코딩, MPEG 시

스템

▲이 종 원（Chong Won Lee） 19기년 3월 2일생 

1994년 2월 : 한양대 학교 전 자공 

학과（공학入卜）

1994년 3월~현재 : 한양대학교 전 

자공학과 석사과정 

※주관심분야 : 디지탈 신호처리, 

적응필터, 이동 

통신


