Structure-Reactivity Relationship of Benzyl benzenesulfonates (Part 2). Nucleophilic Substitution Reaction of Benzyl Derivatives

Benzyl benzenesulfonate류의 구조-반응성 관계 (2보). 벤질 유도체의 친핵성 치환반응

  • Cheong, Duk-Young (Department of Chemistry Education, Kyungpook National University) ;
  • Kim, Sung-Hong (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Myung-Ho (Department of Chemistry Education, Kyungpook National University) ;
  • Yoh, Soo-Dong (Department of Chemistry Education, Kyungpook National University) ;
  • Fujio, Mizue (Institute for Fundamental Research of Organic Chemistry, Kyushu University) ;
  • Tsuno, Yuho (Institute for Fundamental Research of Organic Chemistry, Kyushu University)
  • Published : 19950800

Abstract

The Menschutkin type reactions of substituted(Z)-benzyl systems with substituted(Y)-pyridines and N,N-dimethyl aniline have been studied by the electro-conductometric method in acetonitrile at 35$^{\circ}C$ and 50$^{\circ}C$. On the plot of $k_{obs}$ versus concentrations of nucleophile under pseudo-first order conditions, 3,$4-(CH_3/O)_2$-benzyl bromide and $4-CH_3O$-benzyl bromide were a positive intercept at zero concentration of nucleophile. The $k_1$ value for each compound was invariant with the different nucleoephile. However, $4-CH_3-$ and other electron withdrawing substituents of benzyl bromides did not show the positive intercept. These results are suggested that the reactions have been proceeding simultaneously and independently for the activated benzyl bromides via direct bimolecular and intimate ion pair intermediate.

35$^{\circ}C$와 50$^{\circ}C$ 에서 치환(Z)-benzyl계와 치환(Y)-pyridine 그리고 N, N-dimethylaniline의 Menschutkin형 반응을 아세토니트릴에서 전기전도도법으로 측정하였다. 유사 1차 반응속도상수와 친핵체의 농도로부터 2차반응 속도상수를 계산하였다. $4-CH_3-$보다 전자 받게 치환기를 가진 benzyl bromide는 정상 $S_N2$ (직접 치환 2분자)반응속도만 관찰되었으나 3, $4-(CH_3/O)_2$-benzyl bromide와 $4-CH_3O$-benzyl bromide의 경우 밀착 이온쌍 중간체를 거치는 2분자 반응의 속도도 관측되었다.

Keywords

References

  1. J. Chem. Soc. Baker, J. W.;Nathan, W. W.
  2. J. Am. Chem. Soc. v.73 Swain, C. G.;Langsdorf, W. P.
  3. J. Korean Chem. Soc. v.13 Yoh, S. D.;Hong, S. Y.;Lee, D. S.
  4. J. Korean Chem. Soc. v.13 Yoh, S. D.;Hong, S. Y.
  5. J. Chem. Soc. Perkin Trans. Ⅱ Yoh, S. D.;Tsuno, Y.;Fujio, M.;Sawada, M.;Yukawa, Y.
  6. J. Am. Chem. Soc. v.75 Kochi, J. K.;Hammond, G. S.
  7. Can. J. Chem. v.60 Westy, K. C.;Wascaylo, Z.
  8. J. Am. Chem. Soc. v.101 Young, P. R.;Jencks, W. P.
  9. J. Am. Chem. Soc. v.101 Harris, J. M.;Shafer, S. G.;Moffatt, J. R.;Becker, A. R.
  10. J. Am. Chem. Soc. v.99 Brown, H. C.;Ravindranthan, M.;Peter, E. N.;Rao, C. G.;Rho, M. M.
  11. Tetrahedron Stein, A. R.
  12. J. Chem. Soc. Huges, E. D.;Ingold, C. K.;Patel, C. S.
  13. J. Am. Chem. Soc. v.76 Winstein, S.;Clippinger, E.;Fainberg, A. H.;Robinson, G. C.
  14. J. Am. Chem. Soc. v.91 Sneen, R. A.;Larsen, J. W.
  15. J. Am. Chem. Soc. v.91 Sneen, R. A.;Larsen, J. W.
  16. J. Am. Chem. Soc. v.94 Sneen, R. A.;Robins, H. H.
  17. J. Am. Chem. Soc. v.94 Sneen, R. A.;Bradley, W. A.
  18. J. Am. Chem. Soc. v.95 Sneen, R. A.;Felt, G. R.;Dickason, W. C.
  19. Acc. Chem. Res. v.6 Sneen, R. A.
  20. J. Am. Chem. Soc. v.98 Raber, D. J.;Harris, J. M.;Hall, R. E.;Schleyer, P. v. R.
  21. J. Org. Chem. v.41 Stein, A. R.
  22. J. Am. Chem. Soc. v.96 Graczyk, D. J.;Tayler, T. W.
  23. J. Am. Chem. Res. v.9 Mclennan, D. J.
  24. J. Org. Chem. v.41 Ballisteri, F. P.;Maccarone, E.;Mamp, A.
  25. Tetrahedron Letters. v.21 Katrizky, A. R.;Musumarra, G.;Sakizadeh, K.;El-Shafie, Sayed M. M.;Jovanovic, B.
  26. J. Org. Chem. v.46 Katritzky, A. R.;Musumarra, G.;Sakizadeh, K.
  27. J. Phys. Org. Chem. v.1 Katritzky, A. R.;Brycki, B.
  28. J. Korean Chem. Soc. v.19 Lee, K. A.;Howang, K. T.;Yoh, S. D.
  29. J. Korean Chem. Soc. v.19 Yoh, S. D.
  30. J. Am. Chem. Soc. v.109 Doxsee, K. M.;Feigel, M.;Canary, J. W.;Knobler, C. B.;Cram, D. J.
  31. J. Korean Chem. Soc. v.38 Cheong, D. Y.;Park, J. H.;Kweon, J. M.;Yoh, S. D.;Shim, K. T.
  32. Phil. Mag. v.2 Guggengeim, E. A.
  33. J. Am. Chem. Soc. v.80 Winstein, S.;Robinson, G. C.