Sublimation Study of $BiCl_3$

$BiCl_3$ 승화에 대한 연구

  • Kim, J.H (Institute of Ceramic Technology) ;
  • Blairs, S. (School of Materials Science and Engineering, University of New South Wales)
  • 김준학 (국립공업기술원 요업기술원) ;
  • Published : 19950500

Abstract

Steady-state sublimation vapour pressures of anhydrous bismuth trichloride have been measured by the continuous gravimetric Knudsen effusion method from 370.6 to 488.8 K. Additional effusion measurements have also been made from 438.2 to 495.7 K by the torsion effusion method. Based on a correlation of ${\Delta}_H0298$.15 and ${\Delta}_H0298$.15, a recommended p(T) equation has been obtained for BiCl3(s); log(p/Pa)=-C/(T/K)-2.838log(T/K)-8.097${\times}$10-2(K/T)2+22.588, where p is in Pa, T in Kelvin and ${\Delta}_H0298$.15 in kJmo1-1 and C=(${\Delta}_H0298$.15+5.9988)/1.9146${\times}$10-2. Condensation coefficients and their temperature dependence have been derived from the effusion measurements.

$BiCl_3$의 승화압과 엔탈피를 370.6에서 488.8 K까지 Knudsen 유출법을 사용하여 측정하였고, 또한 438.2에서 495.7 K까지 Torsion 유출법에 의해 추가 실험을 하였다. 평형 승화압도 이 안정상태 데이터로부터 구하였다. ${\Delta}_{sub}H^0_{298.15}$${\Delta}_{sub}S^0_{298.15}$의 상관관계를 이용하여, 추천할 수 있는 p(T) 식을 $BiCl_3(s)$에 의해 아래와 같이 구하였다. $BiCl_3(s); \; log(p/Pa)=-C/(T/K)\;-2.838log(T/K)-8.097{\times}10^{-2}(K/T)^2+22.588$, 여기서 p는 파스칼, T는 절대온도, ${\Delta}_{sub}H^0_{298.15}$의 단위는 kJ $mol^{-1}$이고, $C=({\Delta}_{sub}H^0_{298.15}+5.9988)/1.9146{\times}10^{-2}$이다. 응축상수와 그것의 온도 의존성도 위의 두 방법에 의한 실험으로부터 유도하였다.

Keywords

References

  1. U. S. Dept. of the Interior, Bureau of Mines, Tech. paper No. 360 Maier, C.
  2. Zh. Russ. Fiz. Khim. Obshchestva v.61 Evnevich, E. V.;Sukhodskii, V. A.
  3. Zh. Fiz. Khim. v.A179 Tarasenkov, D. N.;Afinogenov, V. P.
  4. J. Phys. Chem. v.62 Cubicciotti, D.;Keneshea, F. J.;Kelley, C. M.
  5. J. Phys. Chem. v.64 Keneshea, F. J.;Wilson, W.;Cubicciotti, D.
  6. J. Phys. Chem. v.69 Johnson, J.;Silva, W.;Cubicciotti, D.
  7. J. Phys. Chem. v.63 Darnell, A.;Yosim, S.
  8. J. Chem. Thermodyn. v.14 Imperatori, D.;Ferro, O.;Piacente, V.
  9. J. Less-Common Met. v.33 Yanai, M.;Watanabe, F.;Saeki, Y.
  10. J. Sci. Instrum v.38 Blairs, S.;Shelton, A. J.;Unsworth, R.
  11. United States Atomic Energy Commision Report, K-1302 DeMarcus, W. C.
  12. The Characterization of High Temperature Vapors Freeman, R. D.;Edwards, J. G.;Margrave, J. L.(ed.)
  13. J. Chem. Phys. v.48 McCreary, J. R.;Thorn, R. J.
  14. J. Chem. Thermodyn v.2 Iwu, G. O.;Blairs, S.
  15. U. S. Bur. Mines Bull. v.592 Contributions to the Data on Theoretical Metallurgy. XIV. Entropies of the Elements and Inorganic Compounds Kelley, K. K.;King, E. G.
  16. U. S. Bur. Mines Bull. v.584 Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity and Entropy for the Elements and Inorganic Compounds Kelley, K. K.
  17. Trans Faraday Soc. v.36 Skinner, H.;Sutton, L.
  18. Proc. Phys. Soc. (London) v.69A Venkateswarlu, K.;Sundaram, S.
  19. Information Circular 8871 United States Bureau of Mines Beyer, R. P.
  20. Metallurgical Thermochemistry(3rd Ed.) Kubaschewski, O.;Evans, E. L.
  21. J. Phys. Chem. v.70 Cubicciotti, D.
  22. J. Phys. Chem. v.64 Topol, L.;Mayer, S.;Ransom, L.
  23. J. Chem. Phys. v.50 McCreary, J. R.;Thorn, R. J.
  24. United States Bureau of Mines Bulletin v.674 Pankratz, L. B.