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Golden-rule like formulas have been used without theoretical basis to calculate the resonance lifetimes and final 
state distributions in the predissociation of van der Waals molecules. Here we present their theoretical basis by 
extending Fano's configuration interaction theory. Such extensions were independently done by Famonux [.Phys. Rev. 
1985^ 25, 287] but his work, unfortunately, was not well known outside some small group of people in the field 
of Auger spectroscopy. Since my extension is easier to understand than his, it is presented here. Theoretical basis 
of Golden rule like formulas used in the predissociation of van der Waals molecules was obtained by using such 
extensions. Factors responsible for several aspects of predissociation dynamics, such as variations of dynamics as func
tions of resonance lifetimes, or variations in shapes of final quantum state distributions of photofragments around 
resonances, were identified. Parameters, or dynamical information that could be obtained from the measurement of 
partial cross section spectra were accordingly determined. The theory was applied to the vibrational predissociation 
of triatomic van der Waals molecules and its result was compared with those calculated by close・couplin응 method. 
An example where Golden-rule like expression fails and branching ratios vary greatly around a resonance was consider
ed.

Introduction

Photofragmentation processes provide a wealth of informa
tion on the molecular dissociation dynamics. They could be 
visualized as half collision processes but their study as a 
means of obtaining molecular dissociation dynamics have ad
vantages over molecular beam collision experiments. For 
example, complicated and rich resonance structures are com
monly observed in the photofragmentation spectra while not 
many resonances are identified in the collision experiments. 
Predissociation spectra of van der Waals molecules with the 
accompanying final quantum state distributions of photofrag
ments, in particular, have served as the only experimental 
tool to provide the full features of anisotropic intermolecular 
potentials, as intermolecular potentials in van der Waals sys
tems are weak and therefore only a few channels are involv
ed in predissociation processes.3 Still, scattering calculations 
on such predissociation spectra are not easy and Golden-rule 
like formulas have been used to calculate lifetimes and final 
quantum state distributions of photofragments.4 The Golden- 
rule like formula provides the detour to the repeated calcul
ations at the finely divided energy mesh points around re
sonances and directly calculates resonance widths. Though 

it has been successfully applied, its theoretical basis is not 
known yet. It is one of the purposes of this paper to find 
out in what conditions the Golden-rule like formula could 
be applied and when it fails by making use of Fano*s configu
ration interaction theory. Another purpose of this paper is 
to show that analytical solutions for the predissociation pro
cesses can be obtained in Fano's configuration interaction 
theory and many questions on predissociation could be ans
wered in general terms.

Fano showed that the following profile formula paramete
rizes the photodissociation (including photoionization) spec
tra:12

a(£)= s 법:;! , (1)

where e is the reduced energy defined by (E—瓦)/(172); 
Er and h/V represent the resonance energy and the mean 
life time of the quasi-bound state, res가ectively; o0 represents 
the photofragmentation cross section to the continuum state 
that does not interact with the quasibound・bo나nd state; q 
is an index that characterizes the line profile. This formula 
shows that measurement of photodissociation spectra provi
des us with the information on o0» E” r, and q. It strictly 
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holds for the system of one discrete state and one conti
nuum. Formulas for the total photodissociation cros동 sections 
for the system in which configuration interactions of arbit
rary number of discrete states with arbitrary number of con- 
tinua are accounted for, are also known by the work of Fano 
(this will be referred to as Ref. 1).

With the advent of powerful laser sources and efficient 
detection methods, internal state distributions of photofrag
ments are resolved in modern experiments, yielding photodi
ssociation partial cross section spectra.3 These partial cross 
section spectrum data contain richer information on the dis
sociation dynamics. F. Combet-Famoux5 and, independently 
I derived the formulas similar to Fano-Beutler one for the 
partial cross section spectra. As F. Combet-Famoux and I 
used different methods, and as my derivation is simpler, 
I will describe my derivation below.

From this work, it is found that, even for the system of 
one discrete state and many continua, Fano-Beutler profile 
formula can be applied to represent the photodissociation 
partial cross section spectra but with different profile indices 
that are now generally complex numbers.

Import of this work is in the determination of parameters, 
or dynamical information, that can be obtained from the par
tial cross section spectra.

Section II summarizes the Fano theory of configuration 
interaction which provides the basis for this work. Section 
III applies the boundary conditions to obtain the wavefunc
tions that describe the state resolved photodissociation spec
tra. In Section IV, partial cross section formulas are obtained 
in a Fano-Beutler profile form. Physical discussions are given 
for these formulas. Section V considers the application of 
the theory to the vibrational predissociation of triatomic van 
der Waals molecules.

Configuration Interaction Theory for One 
Discrete and Many Continua

Here we are interested in the predissociation of an isola
ted resonance state e into several energetically accessible 
final states w/ (the minu옹 in the superindex means that 
W satisfies an incoming boundary condition). This system 
is called one discrete state and several continua by Fano. 
He obtained the analytical diagonalization of the hamiltonian 
for this system. He first considered a discrete state 0 and 
several continua {w訓 that are assumed to prediagonalize 
the hamiltonian H but couple together via the interaction 
matrices SIH| 平/) i.e.

(eiHie)=瓦，

反岛，8(E—E‘)，q, /-l, 2,…，N)

(畦叩也)=匕身(j=L 2,…，N). (2)

In other words, H is assumed to be diagonalized in each 
subspace spanned by({> or {wE이} but not in the wh이e space 
spanned by {©, {蓝叫}.

The key observation made in Ref. 1 and emphasized later 
in Ref. 2 is that only a certain superposition of continuum 
wavefunctions gives a nonzero interaction matrix element 
with 0. Let us consider an interaction matrix element of 
0 with wS'

(3)

(4)

(wWihi<d)= 芝確叫£=。지］*叱

>

with a normalization condition
N 

0(叮•玲=2礙|2=L

力지 죠nd V may be considered as vectors. Since changes 
only its direction with its length fixed to unity by (4), the 
maximum value ofthe scalar product of 杪 and 
V, is obtained when the unit vector &(시 is parallel to V i.e. 
when w 史 is given by a superposition

(5)u/F -=------------
(»福2严

The other N—l superpositions orthogonal to w會 yield zero 
of (w宵旧g) which implies that these superpositions still 
form the eigenfunctions of Hamiltonian in the wh이e space 
spanned both by 4)and 사压的 as well as in the subspace. 
They will be denoted as W치 in order to emphasize that 
they are eigenfunctions in the whole space. Only 破'inter
acts with the discrete state 0 and thus needs a diagonaliza
tion. The analytical diagonalization is obtained in Ref. 1 and 
yields the following eigenfunction

Wg)=a(E)<b+ Z j dE'b%、v評 (6)

where

b% =VfE［壬亏 +z(E)8(E-r)］ o(E).

The coefficients a(£) and z(E) are given by

1, - (아膈件

I I'=--------- —--------- =------------------------—------------
护+好)»膈2 ［茁一£厂玲"2(行膈2)勺

皿EfTF冷— z(E)=〜-------- =ner
耻/

c 쉬2

F(E)=P I V…二 dE'.

(7)

,(8)

(9)

(10)
E-E'

By using the phase shift A due to configuration interaction 
of 屮云彻 with and a modified discrete state ①

ta*_ 為 T，

f 叩4勵
g<t)+P dEf—一— (ID

E-E

—\|/£!cosA. (12)

Eq. (6) can be rewritten as

驱伊=a> —囲므스— 

n(이膈沪2

In Ref. 1 and 2, the main interest was in the total photodi
ssociation cross section. Total cross section is simply given 
as an incoherent sum as

2仞刿邛)件1(¥纠끼训2+ > |(暨，|끼训2, (13)

A

where i and T denote the initial state and transition dipole 
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operator, respectively. The interference between different ei- 
gensolutions is not needed. The absorption spectra then 
shows a simple functional dependence on photon energy:

히£)= %쎨^与'•一(14)

where the line profile parameter q and the reduced energy 
£ are defined as

q = 回孕一一 (15)

e= 늦马二匚= E二 E〜F (16)
必隔2 r/2

otf and ab denote the following

。。니(破'ITk기% (17)

。广 11(、雌|7、|肥 (18)
心0)

The line profile parameter q is real since the only complex 
value functions w 評 in Eq. (15) always appear as a form 

叫 which is i湘L
In this work, our interest is in the photodissociation spec

tra at which internal state distribution of photofragments is 
analyzed. Cross section formulas for the production of each 
fragment can no longer be written as an incoherent sum 
as in Eq. (13). For those, we have to calculate the transition 
matrix elements in which the final states wavefunctions that 
satisfy the photodissociation(incoming wave) boundary condi
tions are input. Thi읍 is the topic of the next section. Before 
that, let us first rewrite (6) or (12) into the form convenient 
for the application of boundary conditions at the asymptotic 
region, i.e.

+(W g sinA _ 建 cosA), (19)

where 屮捌 lags 建 in phase by 90° at large radius and 
is defined as

亠 1 r ZKe叩萨 

---------- P — dEL (20) n(S*IV*El2)V2 丿 --E-E'

Rnal State Wavefunctions Compatible with 
Bsindery Conditions

The solutions W사 (A=l, 2, …, N) described in the pre
vious section, though diagonalizing the hamiltonian, do not 
necessarily represent the states observed. Their superposi
tions that satisfy the boundary conditions appropriate to the 
observed observables should be considered. For the partial 
cross sections of final states j of fragments in photodissocia
tion, we have to seek the wavefunctions

(21)
A

that satisfy the incoming wave boundary conditions

"J

Z 倾 슶7 @ 배%订+厂'어為,), (22) 

where R denotes the coordinate along which the photodis
sociation takes place;stands for the other remainiri흥 coor
dinates; 助 denote the channel states of photofragments with 
quantum numbers j' specifying the channel states; m denotes 
the reduced mass of the system composed of photofrag
ments; kr is the wavenumber for the relative motion of frag
ments in channel f.

Let us first rewrite

、况，＞=2更《侦=戰爲+ 侦
X 心a)

=咋4"+ 2 2蛇"'碾牝 (23)

At large R, the asymptotic form of '瞻 is obtained from 
(19) with(D going to zero:

나‘ 曾 一，w曾 sinA 一 w 曾 cosA, (24)

where is given as a linear combination of which 
satisfy the boundary condition similar to %叫

蛇s-以g(3)\^豪(占伯眼)， (25)

with S矿亍 replaced by S打.The background scattering matrix 
S*, may be obtained by solving close coupling equations. 
The boundary conditions for 応们 is conveniently obtained 
by different^가ing wF" with respect to R and multiplying 
by —1 as it lags wF" in phase by 90°:

v£w-＞ 茶，(一e'伊明+eT"绥/), (26)

Substituting (26), (25) and (24) into (23) and then applying 
the boundary condition (22) to (23), we obtain

「(盘搭服+*"=饥, (27)

耳이「况矗K'W시］斗• ㈣

Eq. (27) determines the coefficients Akj and Eq. (28) yields 
the formulas for the scattering cross sections S%. In order 
to obtain the coefficients AXp we need not invert (27). Multi
plying V}E on both sides of (27) and summing over /, we 
obtain

-(LI KeI件畔Aaj+痈X墜喝4广V膈. (29)

By applying the fact that 甲宵have zero interaction 
matrix elements with e i.e.

£喫卩据 =(＜이Hlw歐)=0, for 丄松, (30)
r

into (29), we get Aai as

必福沪(31)

In order to determine the remaining coefficients A人j (人#〃)， 

at first it looks as if we have to know the coefficients 胳 
which could be determined by applying the condition that 
Ve1 are orthogonal with each other. It turns out to be not 
the case. Since
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£乎。>4项=、¥曾/*+ 比
人 AGG

=、建&+ Z [w/'tg 轡시] , (32)

partial cro용s section measurements are only affected by the 
combination £3)碾侦 which is easily obtained from (27) 
as

淨虬F+W倍时M

=6力
服匕E

2』卩品|2

(33)

Then the final wavefunctions that satisfy the incoming wave 
boundary conditions are given by

吗E 

（以膈件
e~,AY^ + y£w-

mined by incoherent sums of two terms. One is identical 
to the Fano-Beutler formula with the line profile index re
placed by R(务).The other term is given as a Lorentzian 
shape and its magnitude is proportional to the square of 
the imaginary part of The larger either the imaginary
part or the real part of % is, the more the spectra become 
close to Lorentzian shapes. This case will be considered 
again later when we discuss the theoretical basis of Golden- 
rule like expression in the vibrational predissociation of van 
der Waals molecules. If the imaginary part of % is not zero, 
the spectra always contain Lorentzian shapes whose widths 
are the same for all partial cross sections.

Notice that there is no ofe-like contribution in Eq. (37). 
In (37), d- denotes |(\g£0)|T|OI2 and is the partial cross sec
tion to the final state j in the absence of e ie the direct 
(background) partial cross section to j; q, is defined as

VjE (W曾I 끼，)
(<?-«•)

/一这T赤次”曜+心. (38)

=口一加曾)(W幼]w/‘一厂‘％建)肾 (34) 
'--- ------- z 、--- ---V--------- -

background resonance

The second equality is obtained by utilizing the definitions 
of w 幻 The third equality tells us that 耳性 consists of two 
contributions, the background contribution deprived of 建 

and the resonance contribution. By substitution of (6) into 
(34), we obtain the formula that shows the energy depende
nce explicitly. That is,
"'f J* m(出詛点方严+圈.

(35)

Formulas for Photodissociation Partial 
Cross Section

Photodissociation partial cross sections into final states j 
are obtained from a modulus square of the transition dipole 
matrix elements

皿叫끼宀曾聽긔陽끄"

(36)

(Note that excitation energy of photon is not multiplied to 
the square of the transition dipole matrix. It may not be 
important in the study of resonance since resonances are 
usually sharp.) By substitution of (15) and (16) into (36), 
and taking a modulus square of (36), we obtain the formulas 
for the partial cross sections into final states j as a function 
of reduced energy e:

뜰貯 = 히쁘警迂+。峠磐. (37)

Though the apparent form of Eq. (37) is identical to the 
Fano-Beutler profile formula, it is different from that because 
们 are now complex numbers and depend on j. Spectral sha
pes of the partial photodissociation cross sections are deter

and its real part determines the line profile for the photodis
sociation spectra into final state j (务 is assumed to be a 
slowly varying function of energy). Its imaginary part incohe
rently contributes to the partial cross section and its contri
bution is given as a Lorentzian shape.

The parameter p； defined in (38) may be rewritten as

= 이 伝叫 时)(、压钏 Tin

而席标河元苏丽a沔&丽疝.
With the presence of summations over j in both numerator 

and denominator, it would represent the correlation coeffi
cient betweenthe sets of matrix elements and
(WE叫Hg)，defined as p in Ref. 2. Or, by noting

的評個）=必财件

防 may be rewritten as

（WE叫建＞1끼f） _ （PnF叫끼，）

（応牛*） -（疝叫7脂

(40)

(41)

where Pa represents a projection operator to the state 屮賢 

and defined as 幼.Thus Pj may be viewed as the 
ratio between the transition dipole moments from the ground 
마가。to w/) projected to w* 헤id to itself, ft is unity 
when w/' is identical to Ve-

Eq. (38) tells us that line profile indices &血)are generally 
different for different partial photodissociation cross sections 
and thus branching ratio among photodissociated states may 
vary greatly around resonances as a function of energy. But 
we recall that the interaction of continua with a discrete 
state occurs only through 破.That means the factors that 
determine line profiles for photodissociation cross sections 
should be the same for different partial photodissociation 
cross sections. In order to see this, we rewrite % by making 
use of Eq. (34) instead of Eq. (35).

(、Li) = [(w/q끼i) -(寸評破加剥T\i)]

-e %顽版觥 sinA
（以膈沪2

(〈피 끼 i) —cos△(破t*)] (42) 
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The first bracket denotes the contribution from background 
and the second denotes one from the quasi-bound state 나空). 

From Eq. (42), we obtain

Ce(l-ft)+pX<7 + e)?

= |1 —pjl2+ [외-|-(cross term) (43)

The first term in Eq. (43) is the background contribution 
and is very insensitive to variation of energy 효nd the second 
term is the one from the quasi-bound state and its line 
profile is independent of the photodissociation channel j in 
contrast to R細).Thus the above equation tells us that the 
different line profile indices for different partial photodissocia
tion cross section originate from the different projections of 屮E40 
to w 留 as j varies.

By summing q over jt we obtain the total cross section 
form 니a as

아。t 니('建끼训 2+Zl(応s끼，기 2—I(、微7、li)|2 
j

리 (祚)|7|训 2 쁘窖+ Z 面/侦训2- |(W 飢*)|2

=也 I, + 6 (44)

which shows explicitly the forms of aa and 아 in (14). Other 
useful relations are

q %

<f= £에지 2-하 由)

%

We notice that p, is unity when

(WF叫 屮£叫/히0). (46)

In other words, when the distribution of (y£^|TI0 is com
pletely correlated with that of(w/|H|。). In this case, all 
partial cross sections have the same line profiles (i.e. same 
q). The final state distribution, or branching ratio, remains 
constant with the variation of energy. Otherwise, i.e. if two 
sets of distributions and。压叫切0) are not corre
lated, partial cross sections will have different line profiles 
缶 and the Anal state distribution will vary with the variation 
of energy. In particular, quite different final state distribu
tions may be expected in front and behind the resonance 
energy in the energy range e~1 if the signs of 务 are alter
nating with j. But we have to be cautious for this assertion 
when 务 have large absolute magnitudes. When the absolute 
magnitudes of % are large, partial photodissociation spectra 
resemble Lorentzian shapes and the differences in the values 
of % do not affect the spectral shapes much.

Eq. (37) tells us that all partial cross sections have the 
identical half-width given by r=2n^>| V^£|2. Note that 난le 
half-widths for the partial cross section into j are not given 
by I^=2n| V*f|2. This derives from the fact that only one 
specific superposition may interact with a bound state.

If the direct photodissociation has much smaller magnitu
des than that of resonance photodissociation, then from the 
deHnition (15) the value of q becomes very large and

% 수，q. (47)

In the energy range near resonance
°舟°；去=寺芸祁側 끼시/ 個)

Since I (w 鷲끼训 허 and q do not depend on final state dist
ribution will be determined solely by Appendix A 
shows that the interaction matrices 卩“ are reduced in case 
of the vibrational predissociation of van der Waals molecules 
as

(49)

Thus golden rule type calculation commonly performed for 
the vibrational predissociation of van der Waals molecules 
relies on the negligible contribution of the background or 
direct photodissociation.

Let us now examine the effects of life times on photodis
sociation dynamics. If the lifetime is long photodisso
ciation dynamics may not depend on the ground state wave
functions. In this case, q is large as can be seen from the 
definition. Then 务 거 p必 In this case, dissociation dynamics 
can be well described by Golden-rule like expression. The 
tinal state distributions are hardly affected by the wavefunc
tion before photoabsorption. In the short time limit(r> 1), 
gVl and Eq. (43) becomes b广 11—命I? near resonance since 
£ is close to near resonance and the second and third terms 
may be neglected. Since

Xli-p；l2- £苛_%=% (50)
} i

we see that short time limit is just equal to the direct photo
dissociation.

We see from (37) th가 the parti히 cross section spectra 
for photodissociation provide us with the information on E*, 
専 R細),E Im (^)]2, and E From the total photodissociation 
spectra for which the form니a may be obtained by summing 
(37) over j and are given in (14), we easily obtain the infor
mation on aa, %, Ep, and I二 Values of \VjE\ may be obtained 
from Eq, (38). Partial information on the sign of VjE may 
be provided by the sign of pj.

The remaining condition (28) obtained by applying the 
boundary condition provides the formulas for scattering mat
rices as shown in Appendix B. In contrast to the photodisso
ciation partial cross section formulas, the formulas for this 
have been derived repeatedly in the past by different proce
dures and are well known.

Application of the Result to the Triatomic 
van der Waals Predissociation

Let us now consider the application of the above result 
to vibrational predissociations of triatomic van der Waals 
molecules considered in Ref. 6 where Golden-rule like ex
pression for calculating resonance life times, final state dist
ributions can be applied. The previous section tells us about 
the theoretical background on the Golden-rule like expres
sion. Previous section provides us with additional information 
on the partial crosssections as a function of energy besides 
life times of the resonance states and final state distributions.

Let us briefly describe the system used for the calculation.
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Table 1. Parameters for the Model Intermolecular System A—B2

(a) Reduced mass between A and B2 
m = 6756.8 a.u.

(b) Morse potential parameter
£>^=0.0034 eV Z>Cm = 0.00195 eV
ctAB=L0 a.u.-1 Ocm = 1-0 a.u.-1

6.82 a.u. 7?2^=6.65 a.u.
(c) van der Waals potential parameter

C6o=O.75 eV(a.u.)-6

C62=0.119 eV(a.u.)'6
Cso그 1.58 eV(a.u.)^8
。82=0.8 eV(a.u.) 8

Triatomic van der Waals molecules considered are restrict
ed to rare gas-homonuclear halogen like diatomic molecules. 
Empirical potentials for them like NeCl2, HeCl23,7 are well 
established owing to the state-to-state measurements avail
able for them. The interaction potential between A and B2 
in AB2 triatomic system used by Halberstadt et al.8 for NeCl2 
system has the following form (a slightly modified form for 
HeCl2)

V(R, r, y) = Vm(R, r, Y), when 心，,

V(fi, r, y) = VvdW(rt Y) + (7M - VvdW> P ?，when R>R\ (51) 

in the Jacobi coordinates R, r, Y that denote the distance 
between A and the center of mass of B2, the bond distance 
of B2, and the angle between R and r, respectively. (R, 
r, Y) and VvdW are given as

Vm(R, r, Y)=2)ab £ {［厂ab(죠心厂嚨— I，— if 

+Rm{［广 CMS씨'—1］七 1}2, 

55=-쐲2-쐷L

(52)

(53)

(54)

where 7?ab, is the distance between A and fh B atom, R 
is same as above, and other parameters are constants that 
are adjusted to yield the best fit to the experimental values. 
Two Legendre terms are retained for C6(Y) and C8(Y)t e.g.,

C6(Y) = Go+C사’2(海丫). (55)

R* is chosen as the inflection point of the atom-atom Morse 
potentials and given by R*—4- ln2/aCM- The values of 
parameters used in this paper are slightly different from 
those of Ref. 8 and given in Table 1.

With this interaction potential, the Hamiltonian for the 
triatomic van der Waals molecules AB2 is given in the Jacobi 
coordinates by9

1 月2 * K

成 齋+如+满商+W3'Y)+Hb#)， (56)

where
1 a2

Hb2（*）=—泌君 + *舟）， （57）

denotes the vibrational Hamiltonian of B2. w and p denote 
the reduced mass of A and the center of mass of B2 and

Table 2. Diatomic Molecular Parameters

Vibrational frequency 0.0162 eV
Rotational constant B 0.01758 meV
Equilibrium bond length re 3.044 a.u.
Reduced mass M 32576.6 a.u.

of 电 respectively; j, the angular momentum operator of B2; 
and I, the orbital angular momentum operator of the relative 
motion of A and the center of mass of B2. Thetypical values 
of diatomic molecular parameters of B2 are given in Table
2.

The values of total angular momentum operator /=J+Z 
as is well known both experimentally and theoretically, do 
not affect the predissociation dynamics much and is set to 
zero hereafter. This simplifies the Hamiltonian as I can be 
set to j.

When the wavefunctions ¥ to the dissociation
channel are expanded into base functions Q(匕Y) = (/ 
恒)上(Y,0) as

W,(R,，，丫) = 2 4>,.(r, Y)頌R), (58)
l'

the close-coupling equations are given as

［- 窟一서+ 舞枷)+ 计据踪R) = 0, (59) 

with

層=2m［.E-Bj(j +1)—(a + §~)见， (60)

and

V„(R)=J dY sinrjd淄侦,/, Y)0；(r, Y). (61)

The above close coupling equations are solved by De Vo- 
gelaere algorithm.10 Usual calculations of partial photodisso
ciation cross sections around resonances are usually done 
by solving close coupling equations at first at coarse energy 
mesh points. If abrupt changes in photodissociation cross 
sections are found, then close coupling calculations at much 
finer energy mesh points are done to find the smooth curves 
of photodissociation cross sections around resonance옹. These 
kinds of calculations are very time-consuming since usually 
resonances are very sharp and very fine energy mesh points 
calculations are usually needed. The beauty of the configura
tion interaction theory developed in the previous sections 
lies in that in most cases one energy point calculation is 
enough to find the behaviours of photodissociation cross sec
tions around resonances if bound states are known.

Bound states are obtained by including only closed chan- 
n이s and by starting to solve close coupling equations at both 
ends and then by propagating the solutions and (标 toward 
matching radius. The values of solutions e甲饥 and their 
first derivatives dQjdR, d^b/dR should match at the matching 
radius. Besides this bound state, the configuration interaction 
theory need the continuum solutions \|/£0 of close-coupled 
equations among open channels alone. Then as we saw in 
the previous sections, Schrodinger equations for the combi
ned space {(D，{w/‘}} are solved analytically.
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Table 3. Comparison Between Spectral Parameters Obtained 
by Conjuration Theory and Obtained by Cktse・Coupl은d Me
thod

configuration close-coupled

马(eV) 0.01320262 0.01320249
r (eV) 2.193X10-6 2.193X102
0. (eV*1) 0877 0.879
하 (eV-1) 0399 24.86
q -3493 -349.8

Table 5. Comparison Between Final State Distributions Obtai
ned by Configuration Interaction Theory and by Close-Coupled 
Method

i configuration close-coupled

0 1 1
2 0.455 0.456
4 0.479 0.489
6 0.725 0.728
8 0.440 0.438

10 0.100 0.100

Table 4. Comparison Between Line Profile Indices of Partial 
Photodissociation Cross Sections Obtained by Configuration 
Theory and by Close-Coupled Method

j
configuration close-coupled

罚 R細) R細)

0 0.221 -356 24280 0.219 -358 24920
2 0.279 一233 169 0.281 -233 -48
4 0.305 -171 23810 0.310 -173 23040
6 0.282 -275 10930 0281 -275 11390
8 0.154 -248 34190 0.150 —248 36880

10 0.035 143 76130 0.034 125 81320

The calculation of photodissociation spectra needs a 
ground wavefunction. Its radial and angular functions are 
simply assumed to be of Gaussian types like

%(R, r, Y)= exp[―㈤演-/七)勺 + exp[ 一处(R+R)勺｝

Xexp[-ar(Y-匕)勺 <r\n=0>

三 6@用)丫(丫)〈小=0〉， (62)

where aR and % are related to the standard deviation요 6# 
and 8丫 of radial and angular functions by 句岛=41n2 and 
ay8y=41n2. Values used for R“ and are 3.5 A, 
",0.5 k 20°, respectively.

Total and partial photodissociation cross sections are cal
culated by both configuration interaction thoery and close- 
coupled equations with the parameters given in Table 1 and 
2 and with other information given above. The results are 
summarized in terms of 玖,「，oa,也，q, R緬),[儿(％)]% and 
q and presented in Table 3, 4, and 5.

In the calculation of the line profile index q by configura
tion interaction theory, defined in Eq. (11) is simply re
placed by 0. Data fittings of the partial and total photodisso
ciation cross sections obtained by close-coupled method to 
Fano-Beutler formula given in Eq. (37) are done by Leven- 
berg-Marquardt method describedin Ref. 11. All the parame
ters, 耳，r, %, a，R緬),and o, are fitted. The 
total and partial photodissociation cross sections obtained in 
configuration interaction theory as Eq. (14), (16), (37) need 
the quantity F defined like following

T(E) 
E'—E. dEL (63)

The upper limit of the integration can not be sent to infinity 

in the actual calculation since r is not constant as a function 
of energy but has a small negative slope. On the other hand, 
the lower limit can not go to infinite since the energy can 
not be smaller than the lowest asymptotic energy of dissocia
tion channels. The numerical value of integration with the 
parameters of Table 1 and 2 in the interval [E—T72, E+f/ 
2] is obtained as —2.37X1O-10 eV. It is ten thousands smal
ler than the value of r and it may be argued that F may 
be neglected. But the difference in 玖 in two methods shown 
in Table 3 tells us that it is not. According to configuration 
interaction theory, the difference comes from F. The integra
tion interval may be set to [E—the lowest energy of disso
ciation channel, E+the lowest energy of dissociation chan
nel]. Then the value of F is approximately given by — 2.37X 
IO-10(fi</T«2X10-6 eV, 10 times larger than the actual val
ue. More study on this is needed. Since it is not critical 
in this study, we will not consider it anymore.

In contrast to F, the integration appearing in the definition 
of a> in Eq. (11) may be neglected since q and % calculated 
by both methods agree quite well as can be seen in Table 
3, 4, and 5.

Tables show that the agreements between the two me
thods are excellent except for the background cross section 
cb and [乙血)E The discrepancy in the values of the former 
may be ignored since the variation of the values of 하 from 
0.399 to 24.86 eV" hardly affects the value of ot0t which 
is 107580 eV-1. The agreements in the latter are usually 
good except for j=2, though the agreements are not as good 
as in other quantities.

The Hnal state distribution shown for configuration inter
action theory in Table 5 is actually the one of \ ViE\2 as claim
ed in Golden-rule like expression. The table shows that Gol
den-rule like expression holds quite well in this case. This 
agreement comes from the fact that in the present model 
system excitation to discrete state is much larger than that 
to continua as can be seen from the large value —350 of 
q. The large value of q means that the total photodissociation 
spectrum are of Lorentzian shape. This situation is the same 
for each photodissociation spectra. Though values of &血) 

differ from each other, their absolute values are large and 
all can be represented by Lorentzian curve very well. Thus 
the final state distributions (or branching ratio) do not cha
nge around the resonance.

Configuration theory tells us that if the excitations to con
tinua have comparable size to that to the discrete state, then 
Golden-rule like expression may no longer be used to calcu
late the tinal state distribution. Besides that, it tells us that
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En«r®y («V)

Figure 1. Distributions of probabilities of finding the diatomic 
photofragments whose rotational quantum numbers are j when 
K=45°.

♦n・rgy («V)

Figure 2. Energy dependencies of partial photodissociation cross 
sections g around the resonance energy 0.0132025 eV when *= 
45°.

line profile indices may now become very small and final 
state distributions may change greatly aro나nd a resonance. 
In order to confirm this, we arbitrarily change the shape 
of the ground wavefunction so that now transitions to conti- 
nua are no longer smaller than that to a bound state. This 
is achieved by changing the value of 匕 from 90° to 45°.

The results of such calculations are shown in Figures 1, 
2 and Tables 6 and 7. Table 7 아lows that Golden-rule like 
expression can no longer be used to calculate the final state 
distributions. Figure 1 shows that the final state distributions

Table 6. Spectral Parameters when 匕=45°

total cross section partial cross sections
j R（0） ［頌）了

耳(eV) 0.01320262 0 0.679 5.0 0.1
r (eV) 2.193X1(厂 6 2 0.199 — 6.3 1.2
% (eV"1) 0.26 4 0.851 -0.5 16.6
하 (eV-1) 2.34 6 0.183 8.2 0.02
q 14.5 8 0.429 0.7 8.2

10 0259 -0.8 2.1

Table 7. Comparison Between Final State Distributions 히。e 
Obtained by Configuration Interaction Theory and by Golden- 
rule Like Expression when Yc=45°

j
configuration interaction theory

Golden-rule0.013202 eV E=0.0132025 eV

0 0.25 1.00 1.00
2 0.72 0.48 0.46.
4 1.00 0.84 0.49
6 0.32 0.73 0.73
8 0.18 0.28 0.44

10 0.14 0.04 0.10

vary greatly around the resonance. Such variations in final 
state distributions may be analyzed by line profile parame
ters R场 and [ !„ Values of for j=0, 6, and 8 
are positive numbers and those for ;=2( 4, and 10 are nega
tive ones. This means that _/=0, 6, and 8 contribute relatively 
more when E>E^ than when E<E^ Figure 2 shows such 
behavior graphically. Notice the asymmetry of each partial 
photodissociation cross section spectrum.

Conclusion and Discussion

There are several interesting questions on the photodisso
ciation dynamics around resonances. What are the effects 
of the life times on the final state distributions ? Do the 
initial states before photoabsorption affect the photodissocia
tion dynamics as they do by way of reflection principles in 
direct photodissociation ? Photodissociation cross sections 
vary rapidly around resonances. Then do final state distribu
tions also vary rapidly around resonances ? Normally, they 
do not vary much around resonances. What are dynamical 
parameters responsible for such variations ? Photodissocia
tion spectra exhibit rich structures around resonances. Then 
what dynamical information can we extract from these rich 
structures ? In vibrational predissociation of van der Waals 
molecules, Golden-rule like expression is known to approxi
mate quite well final state distributions. What is the theoreti
cal basis for this ? When and in what conditions does it 
hold?

All the above questions are answered here by deriving 
the general partial photodissociation cross section formulas 
given by Eq. (37). For example, let us consider the effect 
of the life times on the final state distributions.

In the long lived complex, the value of line profile index 
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q defined in Eq. (15) is so large that spectral shapes of partial 
photodissociation cross sections are proportional to the 
square of transition dipole moment to the projected state 
of w/‘ to w 幼 Such projections given by Eq. (48) are energy 
insensitive and final state distributions are the same around 
resonances.

Parameters that determine partial photodissociation spec
tral shapes are identified. Different partial cross sections are 
found to have different spectral shapes in contrast to the 
fact that continua interact with a discrete state via one type 
continuum function w 曾 and photodissociation to w炉 can be 
described by one kind of spectral shape (i.e. q). The cause 
for different spectral shapes is found to derive from the fact 
that dissociation to channel states wE" is influenced by the 
discrete state via the projection of wE” to vF and such 
projections are different from channels to channels.

Golden-rule like expression is found to hold when photo
dissociation is dominated by the transition to discrete states.

The theory is applied to the model system of vibrational 
predissociation of triatomic van der Waals molecules. The 
results are compared with those obtained from close-coupled 
equations. Agreements are quite good. A case where transi
tions to continua can not be ignored is considered and it 
is shown that Golden-rule like expression can no longer be 
used.

In conclusion, the configuration interaction theory develop
ed here is found to be very powerful and is able to disenta
ngle dynamical quantities responsible for the spectral shapes 
of partial photodissociation cross sections, to find out the 
theoretical basis for the Golden-rule like expression, and so 
on.
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Appendix A

Eq. (56) may be partitioned as H0+V(Z?, r, Y)r where Ho 
are defined as

1 j2 ~j2
Ho= _ 或宓+ 如 + 瑟商+，％&)• (56)

In the ^v—v—v,==l vibrational predissociation, (eJHJwf"") 
becomes zero as Ho does not contain the linear or odd power 
terms of r (we assume a harmonic approximation for the 
diatomic vibrational motion). The only term that contains 
the linear or odd power terms of r is V(Rf rt Y). Therefore,

(掀 HI 蛇"))=(见 Vlw 詩”). (65)

Appendix B

Eq. (28) becomes after substitution of Eq. (38)

沖'翌*J〉

尹0瓦一结:気福2 (夠

This differs from formulas of other people in that i is repla
ced by — i. This amounts to the replacement of S matrix 
into their complex conjugates and derive옹 from the adapta
tion of incoming wave boundary condition instead of outgoing 
wave boundary condition.


