DOI QR코드

DOI QR Code

Electrochemistry and Electrokinetics of Prussian Blue Modified Electrodes Obtained Using Fe(III) Complex

  • Published : 1995.09.20

Abstract

Thin films of two kinds of Prussian Blue (PB)-modified, using iron(Ⅲ) complex instead of conventional FeCl3, were prepared on a gold substrate and these films were able to be electrochemically reduced in potassium nitrate solution. In case of PB-modified films prepared from Fe(Ⅲ)-ethylenediamine-N,N'-diacetic acid (FeEN3+)/K3Fe(CN)6 solution, the mid-peak potential was 0.156 V in 0.1 M KNO3 and it was found that potassium ion migrates into or out of the film during the electrolysis. These films were shown to be electrochromic. These films exhibited smaller peak separation than those formed from Fe(Ⅲ)-tartaric acid (FeTA3+)/K3Fe(CN)6 system. The diffusion coefficient of Fe(CN)63-/4- redox couple, evaluated using the fabricated Au rotating disc electrode(rde) previously reported, was in good agreement with the existing data. Two experimental procedures, including the voltammetry at relatively low scan rates and the rde study, have been used in order to characterize the electrode kinetics. The electrode kinetics of some redox couples (FeEN2+-FeEN3+ and FeTA2+-FeTA3+) on both PB-modified thin films and bare Au electrode were studied using a Au rde. In all cases the rate constants of electron transfer obtained with the PB-modified film electrodes were only slightly less than those obtained for the same reaction on bare Au disc electrodes. The conductivities, as determined from the slopes of the i-V curves for a ca. 1 mm sample for dried PB-modified potassium-rich and deficient bulk samples pressed between graphite electrodes, were 6.21 × 10-7 and 2.03 × 10-7(Ω·cm)-1, respectively.

Keywords

References

  1. J. Electrochem. Soc. v.125 Neff, V. D.
  2. J. Electroanal. Chem. v.10 Burton, K. F.;Riddiford, A. C.
  3. J. Appl. Phys. v.53 Itaya, K.;Takahashi, S.;Toshima, S.
  4. J. Electrochem. Soc. v.137 Carpenter, M. K.;Conell, R. S.
  5. J. Appl. Electrochem. v.21 Habib, M. A.;Maheswari, S. P.;Carpenter, M. K.
  6. J. Electrochem. Soc. v.132 Deberry, D. W.;Viehbeck, A.
  7. J. Electrochem. Soc. v.130 Deberry, D. W.;Viehbeck, A.
  8. J. Electrochem. Soc. v.137 Kuwabara, K.;Nunome, J.;Sugiyama, K.
  9. J. Polymer Sci. Polymer Lett. v.24 Kaneko, M.
  10. Ber. Bunsenges. Phys. Chem. v.89 Engel, D.;Grabner, E. W.
  11. Anal. Chim. Acta v.239 Krishnan, V.;Xidis, A. L.;Neff, V. D.
  12. J. Am. Chem. Soc. v.106 Itaya, K.;Shoji, N.;Uchide, I.
  13. Anal. Chem. v.56 Cox, J.;Kulesza, P.
  14. Electrochim. Acta v.21 Li, F.;Dong, S.
  15. J. Phys. Chem. v.16 Ellis, D.;Eckhoff, M.;Neff, V. D.
  16. Bull. Kor. Chem. Soc. v.85 Moon, S. B.;Kim, Y. I.
  17. J. Electroanal. Chem. v.265 Oyama, N.;Ohsaka, T.;Yamamoto, N.;Matsui, J.;Hatozaki, O.
  18. Electrochemical Method Bard, A. J.;Faulkner, L. R.
  19. Anal. Chem. v.34 Azzim, S.;Riddiford, A. C.
  20. Electrochim. Acta v.33 Bochmann, H. G.;Vielstich, W.
  21. J. Electrochem. Soc. v.89 Meber, J.;Samec, Z.;Marecek, V.
  22. Modern Aspects of Electrochemistry Perkins, R. S.;Anderson, T. N.;Bockris, J. O'M.(ed.);Conway, B. E.(ed.)
  23. Bull. Chem. Soc. Jpn. v.64 Lin, R. J.;Toshima, N.
  24. Inorg. CHem. v.23 Crumbliss, A. V.;Lugg, P. S.;Morosoff, N.
  25. J. Electroanal. Chem. v.122 Laviron, E.
  26. Acc. Chem. Res. v.19 Itaya, K.;Uchida, I.;Neff, V. D.
  27. Inorg. Chem. v.27 Lundgen, C. A.;Murray, R. A.