DOI QR코드

DOI QR Code

The Effect of Unprecracked Hydride on the Growth and Carbon Incorporation in GaAs Epilayer on GaAs(100) by Chemical Beam Epitaxy

  • Published : 19950200

Abstract

We have grown GaAs epilayers by chemical beam epitaxy(CBE) using unprecracked hydrides and metal organic compounds via a surface decomposition process. This result shows that unprecracked arsine (AsH3) or monoethylarsine (MEAs) can be used in chemical beam epitaxy(CBE) as a replacement of a precracked AsH3 source in CBE. It was also found that the uptake of carbon impurity in epilayers grown using trimethylgallium(TMG) with unprecracked AsH3 or MEAs was significantly reduced compared to that in epilayers grown by CBE process employing TMG and arsenics produced from precracked hydrides. We propose a surface structural model suggesting that the hydrogen atoms play an important role in the reduction of carbon content in GaAs epilayer. Intermediates like dihydrides from hydride sources were also considered to hinder carbon atoms from being incorporated into the epilayers or to remove other carbon containing species on the surface.

Keywords

References

  1. J. Crystal Growth v.105 Musolf, J.;Weyers, M.;Balk, P.;Zimmer, M.;Hofmann, H.
  2. J. Crystal. Growth v.55 Veuhoff, E.;Pletschen, W.;Balk, P.;Luth, H.
  3. J. Vacuum Sci. Technol. v.B3 Putz, N.;Veuhoff, E.;Heineke, H.;Heyen, M.;Luth, H.;Balk, P.
  4. J. Crystal Growth v.74 Putz, N.;Heineke, H.;Heyen, M.;Balk, P.;Weyers, M.;Luth, H.
  5. Appl. Phys. Lett. v.38 Calawa, A. R.
  6. J. Crystal Growth v.95 Cunningham, J. E.;Trimp, G.;Chiu, T. H.;Ditzenberger, J. A.;Tsang, W. T.;Sergent, A. M.;Lang, D. V.
  7. J. Crystal Growth v.111 Hafich, M. J.;Lee, H. Y.;Silvestre, P.;Robinson, G. Y.
  8. Appl. Phys. Lett. v.33 Calawa, A. R.
  9. Jpn. J. Appl. Phys. v.24 Tokumitsu, E.;Kudou, Y.;Konagai, M.;Takahashi, K.
  10. Mater. Res. Soc. Symp. Proc. v.281 Park, S. J.;Ro, J. R.;Sim, J. K.;Lee, E. H.
  11. Mater. Res. Soc. Proc. v.240 Park, S. J.;Sim, J. K.;Ro, J. R.;Yoo, B. S.;Park, K. H.;Lee, E. H.
  12. J. Cryst. Growth v.105 Isu, T.;Hata, M.;Watanabe, A.
  13. J. Appl. Phys. v.64 Robertson, A.;Chiu, Jr., T. H.;Tsang, W. T.;Cunningham, J. E.
  14. J. Appl. Phys. v.67 Liang, B. W.;Chin, T. P.;Tu, C. W.
  15. J. Cryst. Growth v.105 Lee, B. J.;Houng, Y. M.;Miller, J. N.
  16. J. Cryst. Growth v.120 Benchimol. J. L.;Zhang, X. Q.;Gao, Y.;Roux, G. Le;Thibierge, H.;Alexandre, F.
  17. J. Cryst. Growth v.105 Abernathy, C. R.;Pearton, S. J.;Ren, F.;Hobson, W. S.;Fullowan, T. R.;Katz, A.;Jordan, A. S.;Kovalchik, J.
  18. J. Cryst. Growth v.103 Konagai, M.;Yamada, T.;Akatsuka, T.;Nozaki, S.;Miyake, R.;Saito, K.;Fukamachi, T.;tokumitsu, E.;Takahashi, K.
  19. J. Vac. Sci. Technol. v.A11 Creighton, J. R.;Bansenauer, B. A.;Huett, T.;White, J. M.
  20. J. Chem. Phys. v.97 Zhu, X.-Y.;Wolf, M.;White, J. M.
  21. J. Electrochem. Soc. v.130 Reep, D. H.;Ghandhi, S. K.
  22. J. Cryst. Growth v.102 Larsen, C. A.;Li, S. H.;Buchan, N. I.;Stringfellow, G. B.;Brown, D. W.
  23. Appl. Phys. Lett. v.56 Memmert, U.;Yu, M. L.
  24. Mat. Res. Soc. Symp. Proc. v.101 Squire, D. W.;Dulcey, C. S.;Lin, M. C.
  25. J. Vac. Sci. Technol. v.B5 Farrell, H. H.;Harbison, J. P.;Peterson, L. D.
  26. Jpn. J. Appl. Phys. v.24 Briones, F.;Golmayo, D.;Gonzales, L.;De Miguel, J. L.
  27. J. Vac. Sci, Technol. v.B5 Frankel, D. J.;Yu, C.;Harbison, J. P.;Farrell, H. H.
  28. J. Phys. Rev. v.B37 Larsen, P. K.;Chadi, D.