DOI QR코드

DOI QR Code

Theoretical Studies on the Acyl Transfer Reactions Involving a Tetrahedral Intermediate$^\dag$

  • Published : 1995.12.20

Abstract

Theoretical studies of the effect of the nonleaving group (RY) on the breakdown mechanism of the tetrahedral anionic intermediate, T-, formed by the addition of a less basic phenoxide nucleophile (X) to phenyl benzoates with a more basic phenoxide leaving group (Z) have been carried out using the PM3 MO method. The identity acyl transfer reactions (X=Z) are facilitated by an electron-withdrawing RY whereas they are inhibited by an electron-donating RY group. The results of non-identity acyl transfer reactions indicate that a more electron-donating RY group leads to a greater lowering of the higher barrier, TS2, with a greater degree of bond cleavage, and a greater negative charge development on the phenoxide oxygen atom, whereas the opposite is true for a more electron-withdrawing RY group, i.e., leads to a greater lowering of the lower barrier, TS1. The results provide theoretical basis for the signs of ρXY(>0) and ρYZ(<0) observations.

Keywords

References

  1. Advanced Organic Chemistry(4th ed.) March, J.
  2. Mechanism and Theory in Organic Chemistry(3rd ed.) Lowry, T.H.
  3. Chem. Soc. Rev. v.23 Williams, A.
  4. J. Chem. Soc. Perkin Trans. 2 Bond, P.M.;Castro, E.A.;Moodie, R.B.
  5. J. Am. Chem. Soc. v.99 Gresser, M.J.;Jencks, W.P.
  6. J. Org. Chem. v.45 Castro, E.A.;Freudenberg, M.
  7. J. Org. Chem. v.46 Castro, C;E.A. Castro
  8. J. Chem. Soc. Perkin Trans. 2 Castro, E.A.;Steinfort, G.B.
  9. J. Org. Chem. v.50 Castro, E.A.;Santander, C.L.
  10. J. Org. Chem. v.54 Castro, E.A.;Ureta, C.
  11. J. Org. Chem. v.55 Castro, E.A.;Ureta, C.
  12. J. Chem. Soc. Perkin Trans. 2 Castro, E.A.;Ureta, C.
  13. J. Chem. Res. Castro, E.A.;Ibanez, F.;Saitua, A.M.;Santos, J.G.
  14. J. Phys. Org. Chem. v.8 Park, Y.S.;Kim, C.K.;Lee, B.S.;Lee, I.;Lim, W.M.;Kim, W.K.
  15. Bull. Korean. Chem. Soc. v.16 Lim, W.M.;Kim, W.K.;Jung, H.J.;Lee, I.
  16. J. Am. Chem. Soc. v.115 Stefanidis, D.;Cho, S.;Dhe-Paganon, S.;Jencks, W.P.
  17. Chem. Soc. Rev. v.19 Lee, I.
  18. Adv. Phys. Org. Chem. v.27 Lee, I.
  19. Bull. Korean Chem. Soc. v.15 Lee, I.
  20. J. Chem. Soc. Perkin Trans 2 Kim, T.H.;Huh, C.;Lee, B.S.;Lee, I.
  21. J. Chem. Soc. Perkin Trans. 2 Koh, H.J.;Lee, H.C.;Lee, H.W.;Lee, I.
  22. J. Comput. Chem. v.10 Stewart, J.J.P.
  23. Theory and Practice of MO calculations on Organic Molecules Csizmadia, I.G.
  24. J. Phys. Chem. v.74 Fukui, K.
  25. Angew. Chem. Int. Ed. Engl. v.19 Muller, K.
  26. J. Chem. Phys. v.80 Bell, S.;Crighton, J.S.
  27. Available from Quantum Chemistry Program Exchange(QCPE) No. 506
  28. Chemical Kinetics and Dynamics Steinfeld, J.I.;Francisci, J.S.;Hase, W.L.
  29. Handbook of Organic Chemistry Dean, J.A.
  30. Mechanism and Theory in Organic Chemistry(3rd ed.) Lowry, T.H.
  31. J. Am. Chem. Soc. v.94 Menger, F.M.;Smith, J.H.
  32. Theoretical Aspects of Physical Organic Chemistry. The $S_N2$ Mechanism Shaik, S.S.;Schlegel, H.B.;Wolfe, S.
  33. Kinetics and Mechanism(3rd ed.) Moore, J.W.;Pearson, R.G.