DOI QR코드

DOI QR Code

Conformational Analysis and Molecular Dynamics Simulation of Lactose

  • Published : 1995.12.20

Abstract

The conformational details of β-lactose are investigated through molecular dynamics simulations in conjunction with the adiabatic potential energy map. The adiabatic energy map generated in vacuo contains five local minima. The lowest energy structure on the map does not correspond to the structure determined experimentally by NMR and the X-ray crystallography. When aqueous solvent effect is incorporated into the energy map calculation by increasing the dielectric constant, one of the local minima in the vacuum energy map becomes the global minimum in the resultant energy map. The lowest energy structure of the energy map generated in aquo is consistent with the one experimentally determined. Molecular dynamics simulations starting from those fivelocal minima on the vacuum energy map reveal that conformational transitions can take place among various conformations. Molecular dynamics simulations of the lactose and ricin B chain complex system in a stochastic boundary indicate that the most stable conformation in solution phase is bound to the binding site and that there are conformational changes in the exocyclic region of the lactose molecule upon binding.

Keywords

References

  1. Transactions of the American crystallographic association Howard, M.E.
  2. J. Biol. Chem. v.256 Kornfeld, K.;Reitman, M.L.;Kornfeld, R.
  3. J. Biol. Chem. v.257 Houston, L.L.;Dooley, T.P.
  4. Proteins: struct. Funct. Genet. v.10 Rutenber, E.;Robertus, J.D.
  5. J. Biochem. v.98 Yamasaki, N.;Hatakeyama, T.;Funatsu, G.
  6. Biochemistry v.29 Bevilacqua, V.L.;Thomson, D.S.;Prestegard, J.H.
  7. Biochemistry v.31 Bevilacqua, V.L.;Kim, Y.M.;Prestegard, J.H.
  8. in The Polysaccharides(Vol.1) Rees, D.A.;Morris, E.R.;Thom, D.;Madden, J.K.;Aspinall, G.O.(ed.)
  9. J. Am. Chem. Soc. v.97 Gelin, B.R.;Karplus, M.
  10. Biopolymers v.18 Joshi, N.V.;Rao, V.S.
  11. Biochemistry v.26 Cumming, D.A.;Carver, J.P.
  12. J. Am. Chem. Soc. v.108 Brady, J.W.
  13. Carbohyd. Res. v.165 Brady, J.W.
  14. Biopolymers v.28 Tran, V.;Vuleon, A.;Imberty, A.;Perez, S.
  15. J. Comput. Chem. v.4 Brooks, S.R.;Bruccoleir, R.E.;Olafson, B.D.;States, D.J.;Swaminathan, S.;Karplus, M.
  16. CHARMm version 22 all hydrogen parameter set, CARBOH. RTF and CARBOH.PRM
  17. 16 New Elgland Executive Park Molecular Simulations Inc.
  18. Physik. Z. v.13 Born, M.;Von Karman
  19. Biopolymer v.24 Brooks Ⅲ, C.L.;Burnger, A.;Karplus, M.
  20. J. Chem. Phys. v.79 Jorgensen, W.L.;Chandrasekhar, J.;Madura, J.D.;Impey, R.W.;Klein, M.L.
  21. J. Chem. Phys. v.60 Stillinger, F.H.;Rahman, A.
  22. Biopolymers v.27 Ha S.N.;Madsen, L.J.;Brady, J.W.
  23. Phys. Rev. v.159 Verlet, L.
  24. Biopolymers v.27 French, A.D.
  25. Bull. Chem. Soc. Jpn. v.47 Hirotsu, K.;Shimada, A.
  26. Z. Kristallogr. v.168 Noordick, J.H.;Beurskens, P.T.;Bennema, P.;Bisser, r.A.;Gould, R.O.