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The Schldgl model with the first order transition for a photochemical reaction is considered to study the dynamic 

behaviors in the neighborhood of the Gaussian white noise by obtaining the explicit results of the time-dependent 

variance and time correlation function with the aid of approximate methods based on the stationary properties of 

the system. Then, we discuss the effect of external noise strength on the stability of the model at steady states 

in detail.

Introduction

Since Kuznetsov et al. studied the nonnegligible effect of 

the external noise in the valve oscillator,1 theoretical and 

experimental studies of external noise situations have been 

reported in the various systems, such as nematic liquid crys

tals,2 dye laser system,3 nonlinear electric circuits/'6 chemi

cal reactions7'8 and hydrodynamic instabilities.9 External 

noise refers fluctuations present in a given system which 

are not self-originating. External fluctuations exist when the 

system is placed in a stochastic environment or when it is 

stochastically driven by the controlled fluctuations of one 

of parameters. The mathematical modeling of external noise 

is made of by considering a deterministic equation appro

priate in the absence of external fluctuations. One then con

siders the external parameter which undergoes fluctuations 

to be a stochastic variable. The noise term of the stochastic 

differential equation obtained in this way is usually of multi

plicative character, that is, it depends on the instantaneous 

value of the variables of this system. It does not scale with 

the size of system and is not necessarily small. We may 

consider the external noise as an external field which drives 

the system.

An external noise is frequently assumed to satisfy the Or- 

nstein-Uhlenbeck process, which is only stationary Markov 

stochastic process. 10~12 The Gaussian white noise is obtained 

from the Ornstein-Uhlenbeck process by reducing the cont

rollable correlation time of the noise, which is the parameter 

independent of the noise intensity, to zero.10~11 For the sake 

of mathematical convenience the Gaussian white noise is 

most frequently applied in the theoretical stochastic process.

An external noise plays an important role in the nonequi

librium system: this can postpone or advance instabilities, 

and may even give rise to the shift of bifurcation diagram 

and transitions to states that cannot occur if the surroundi

ngs are free from random fluctuations. Such phenomena are 

interpreted theoretically as being associated with changes 

that the stationary probability distribution of the system un

dergoes when the noise parameters are varied,13'20 even 

though the general validity of this indirect interpretation is 

questioned.

We consider the Schldgl model with the first order transi

tion for a photochemical reaction. It is assumed that the 

system is spatially homogeneous and the size of the system 

is large enough to neglect internal fhictu가ions「° The pur

pose of the present paper is to investigate the effect of the 

external fluctuating light intensity on the stability of the 

steady states in the neighborhood of the Gaussian white 

noise by obtaining the explicit results of the time-dependent 

variance and time correlation function with the aid of approx

imate methods based on the stationary properties of the sys

tem. The approximate method at the unstable steady state 

is different from that at the stable steady state. The result 

at the unstable steady state will directly shows that the 

strength of the external noise stabilizes the unstable steady 

state.

In the next section the Fokker-Planck equation near the 

region of the Gaussian white noise is obtained with the aid 

of the wide band perturbation method.10~11 By using the 

equation we discuss the effect of external light on the sta

tionary properties of the system at the steady states. With 

approximate methods based on the stationary properties we 

obtain time-dependent variance and correlation function at 

the stable and unstable steady states. In the final section 

we discuss the results of the present work.

Theory

Let us consider the Schlogl mod이 with the first order 

transition for a photochemical reaction21

A +X & 3X+B, X~也C, (1)

k-y

where kx and are the rate constants, A is the reactant 

and B and C denote the products. The rate equation for 

the concentration of the intermediate X is given by the fol

lowing equation with the concentrations of A and B being 

held constants

쓰 = -^3+yX-/(l-exp-CLV); 咯-,

at K-iD

1= /只,t=k—iBj (2)
K-1D

In Eq. (2), X denotes the concentration of the intermediate; 
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t is the real time; 70 is the incident light intensity and a 

is the absorption coefficient times the sample thickness. It 

is assumed that the intensity satisfies the Ornstein-Uhlen- 

beck process

二 一 A/(0 + (3)

where A>0, g(£) is the external noise and o is the strength 

of the noise. The noise satisfies the Gaussian condition

〈急)〉=0,(4)

In Eq. (4) 8(Z-f) is the Dirac delta function. The steady state 

values of X for small extinction coefficient are

X$ = 0, ± (y-a4)1/2. (5)

When Is>y/a, there exists。가y one sta미e steady state, X$ = 0. 

In the case of I5<y/af there are three steady states, that 

is, Xs=0 and ± (y—a/s)1/2 corresponding to the unstable and 

stable steady states, respectively.

Defining the fluctuating parts of X and I from the steady 

state values due to the noise

x(t)=X(t)-XSr (6)

the equations for x(Z) and i(t) become

~으 x(t)=(丫 一 3XS2 - als)x(t) - 3Xsx(O2 ~x(t)3 - a［X$+x(汕0),

~으 认f) = 一 + 英(t). (7)

According to the Wiener-Khintchine theorem12 the spectral 

density of the Ornstein-Uhlenbeck process is

S*((o) = <i(o)):'((o)*> =(鷲入2 ， (8)

where

t((o)= I exp—tttrf i(0 dt, (9)
J —00

Considering the linear parts of Eq. (7), the time correlation 

functions are

G0(t)=<x(/)r(0)> = <r(0)2> exp — 慎 U

伝/。) =〈氾)如)〉= 윽 exp- \t\/t„aisei (10)

where we have assumed that G(以(t')〉= 0 and «(t)S(t')〉= 0. 

The correlation times for the fluctuating macroscopic variable 

and intensity are given by

ax^ — Y + a/，M叔=~又=巳(11)

Substituting X—e-2 into Eq. (8) and transforming into 히私 

the spectral density may be written as

S3) = <i(co)z(w)*> = g提，2 (12)

In the limit £—>0 the correlation time tends to zero and 

the bandwidth goes to infinity. Therefore, the spectrum be

comes flat, but the spectral density vanishes for all finite 

frequencies. This is noiseless limit. To avoid ending up with 

a noiseless limit and to obtain the correct white noise limit, 

the intensity of external fluctuations should be appropriately 

scaled in Eq. (7). Scaling i by i/e, the spectral density is

S，%o) = K 丝心 = 坪쯔「 (13)

The above spectral density has the finite value of 2no2 in 

the limit £—>0 called as the Gaussian white noise limit.11~12

Since our main interest is to investigate dynamic behaviors 

near the region of the Gaussian white noise, Eq. (7) can 

be rewritten in the neighborhood of the white noise

으 X(t) =/(x) + 半 汜), 으 i(t) = 一 #氾) + 울鳥), (14) 

where

幻=(丫一3快_以)比一3由：2_日 g(x)= -a(Xs+x). (15)

The Fokker-Planck equation corresponding to the above Lan

gevin equation is

-斗PWEt)= 一으 顷r)+ 丄川:)对)］尸氐財
허 ox E

+ 늘 옸 氾)尸@") +唸 Pg,t). (16)

The exact solution for the nonlinear Fokker-Planck equation 

is not available. Thus, using the wide band perturbation ex- 

pansion10*'11 and taking the result up to the e2 term, we 

have

产(r,if)=P心)的)； (17)

~으 P(i) = —* ［氾)地)］ + y P(i) = 0, (18a)

으 FW = ［-으伽驾 으g)으，，이财)；

Mr) =g(電)一幻 一/化)'gh)丄 (18b)

The above equations show that the noise is in the stationary 

state and the macroscopic variable in the Gaussian white 

noise limit satisfies the Stratonovich stochastic process, that 

is, in the e—>0 limit the Fokker-Planck equation corresponds 

to the Stratonovich definition of the following Langevin 

equation with multiplicative noise12

으 x(t) =/(x) + C畝r)W). (19)

At first, let us consider the static properties of the model 

in order to discuss the nonlinear effect on the time correla

tion function. Considering the £2 term as the perturbed term, 

the stationary s이ution of Eq. (18) may be written as

R(r)="){l +宥C +曲竺辛脸一-聲』，(20)
1 L gOc) a2 g(x)z V

where

Ax)2

g=N*)T exp［으『■瓷卜 曲］

(21)

(22)
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In Eq. (22) N is the normalization constant. 1

At the stable steady state P,M is assumed to be Gaussian, 

that is,

p (、_( 2 2r2
naW ) 은緋 a2o2 - (23)

P$侦)is up to the second order of x

P«)=P&)( 1 + £2{ya2o2 + 8Xsx - 읊2 + 2(y 一 或)x 까),

(24)

For the case of e<1 we may neglect the perturbed term 

in Eq. (24). The variance and nth order moments are

<x2>, =「x2Pl>x(^)dx=, (25a)

3〉_ TO, if n is an odd positive integer,
' Lail possible pair products, if n is an even positive 

integer. (25b)

There is great interest in the unstable steady state, Xs — 0. 

The stationary probability distribution is

户山)=(a。)"、" "I exp一盖;阡柔耕〉。，

(26) 

where「(0/2) is the gamma function. In the case of the Gaus

sian white noise limit (e=0), the dependence of the station

ary probability distribution on the light intensity and noise 

아rength is shown in Figure la. The figure shows that the 

parameters affect the state of the system profoundly. When 

P>1, the probability distribution is a binodal Gaussian distri

bution with the maximum at x = ± Cy — a/s—a2o2/2]1/2. The 

maximal peaks show that the deterministic stable steady 

states are shifted to ± Ly—a/s — a2o2/2]1/2 due to the external 

noise. When 8=1 and <1, the distribution is a Gaussian 

and a delta-like distribution, respectively. Including the per

turbed term, Ps(r) is22

g)=尸山){1 - £2E3(y 一 a4)-探 + 亳(y-oZ；-x2)2]} (27)

In Eq. (27) the perturbed term should be less than unity. 

As £ increases, the probability distribution deviates from the 

case of e—0. As shown in Figure lb, the distribution of 

£ — 0.10 corresponds to that of e=0. When £ = 0.31, it slightly 

deviates from that of e=0. Thus, when e<1, the term in

cluding e2 may be neglected. The variance and nth order 

mommts are

G+〉s=「^PosCr^-y-aZs, (28)

〈%2카*〉s=0, <x%〉*=0= n (29)

if n is a positive integer.

As shown in Eq. (10), the time conflation function bet

ween the fluctuating macroscopic variables does not include 

the noise effect at the steady states and especially diverges 

at the unstable steady state. As previously stated, the state 

of the system at X=0 is severely influenced by the noise 

strength. Thus, let us obtain the correlation function from 

the nonlinear equation.
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Rgure. 1. (a) The stationary probability distribution of Eq. (26). 

The heavy dotted, heavy solid and heavy dashed lines denote 

the distribution of 0=1.47, 1 and 0.84, respectively. The values 

of parameters, when 1.47, are 丫그 2, a=0.3, 4=5.5 and 

2.3. In the case of p=l, 丫=2, a=0.5, Is=3 and o=2. When 

8=0.84, 丫=2, a=0.3, L=6.0 and a=2.3. (b) The dependence 

of the probability distributions on the parameter, e. The heavy 

and light lines denote e=0 and 0.31, respectively. The lines of 

= 0.1 correspond to those of 8=0. The values of other parame

ters are the same as in Figure la.

Using Eq. (7), the time correlation function satisfies the 

following equation

■으 Ga)=(Y-3X52-aZs)G(0-<x(03x(0)>, (30)

With the aid of Eq. (18b) the time-dependent variance is

으 W> = O^a%2 + 2{(y-3Ys2- aZs) + a2o2Ll+£2(y 

at

-12X?-aZJ]}<rtf)2>-2(l~4E2a2o2)W>. (31)

Since it is not available to obtain the exact solutions for 

the time correlation function and variance, an approximate 

method is introduced. The approximate method at the unsta

ble steady state is different from that at the stable steady 

st간e. Thus, dynamic behaviors 가 the stable and unstable
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Rgure. 호. (a) The time-dependent variance at the stable steady 

state. The dashed, heavy dashed and heavy dotted lines repre

sent e=0, 0.10 and 0.31 for 2 (y—aZs)>a2o2, respectively. The 

solid, heavy solid and dotted lines denote e=0, 0.10 and 0.31 

for 2(y—aZs)<a2a2, respectively. The values of other parameters 

are 丫=2, a=0.3, <x(0)2> = 0.01 and a=2.2. The light intensity 

L=3 (and 6) is taken for 2(y—aZs)>a2a2 (and 2(y—a4)<a2o2), 

respectively. The same values of the parameters are used in 

Figs. 2b and 3. (b) The comparison of the variances at the stable 

steady state given in Eqs. (34) and (36), when e — 0. The results 

of Eq. (34) for 2(y—als)> (and <)a2o2 are represented by the 

dotted and solid lines. The other heavy lines denotes the approx

imate results of Eqs. (36).

steady states are discussed separately.

Let us first consider the Gaussian approximation at the 

stable steady state and Eqs. (30) and (31) are reduced to

으 G(t) = — [2(丫 - a4)+3G(t)2〉]G(t), (32)

으 <r(02>=aWCy 一 a厶) + 2{- 2(y—a厶) + a2a2[l 一 lie2

X (y - aZs)] I <x(f)2> - 6(1 - 4e2a2c2)<x(f)2>2. (33)

The explicit result of the variance is

而-况£+2“<*(0)2〉] expv勾-£|刀+2«迎2〉] 
이屋〃 _ 2aLD+2a<z(0)2>-(E+2a<x(0)2»expy/Ad，()

흐: 0.005

2 4 6 8 10

Figure. 3. The comparison of the time correlation functions at 

the stable steady 아ate given in Eqs. (37) and (38). When 2(y 

一以)>廿(玲 the result of Eq. (38a) corresponds to with Eq. (37) 

for the cases of e —0, and c = 0.31. In the case of 2(y —a人)<%矽, 

the result of Eq. (38b) agrees well with Eq. (37) for the case 

of e = 0. For e=0.31 in the case of 2(Y—aZJ<a2o2 the function 

deviates from that of e=0.

a— -6(1-4e2a2o2), b= —4(y-aD+2aW[l一 11c2(y一a4)l,

(35)

D=b노、/& E=b-A = Z>2-4ac.

The example of the dependence of <x(/)2) on the parameters 

are shown in Figure 2a. The variance in the case of y-als>a2 

a2 approaches to its stationary value more rapidly than that 

of 丫-aZY 心2. When e=0.10, the variances are almost the 

same as those of e = 0. As e increases, the variance deviates 

from the case of £=0. The results in the two cases are

n2 2
[1-exp-4(7-04X1, if 2(Y-aZs)>a2c2, (36a)

W>- 2 2
으孑 [l — exp—2aS], if 2(y—a/^XaV. (36b)

The result of Eq. (36a) indicates that the deterministic and 

noise terms play the major and minor roles, respectively. 

However, Eq. (36b) shows that the very strong noise destroys 

the order based on the deterministic equation. As ffp, Eq. 

(36a) corresponds to Eq. (25a), since the stochastic process 

is based on the deterministic rate. Accordingly, we may say 

that the approximation method is correct after long time. 

The comparison between the resets of Eqs. (33) and (35) 

is given in Figure 2b. Substituting Eq. (34) into Eq. (36), 

we have
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Rgure. 4. The dependence of variance at the unstable steady 

state on e. The solid, dashed and heavy solid lines represents 

£=0, 0.10 and 0.31, respectively. The values of other parameters 

are y=2, a=0.3, /s=6, <x(0)2> = 0.01 and o=1.7.

<r(0)2>exp—2(y — a/j + -^-a2o2)/, if 2(y — a4)>a2o2, (38a) 

긔. 「2a2o2 1V2 1

&渺〉靜응T exp-2(丫-a厶+ *g 
L3(Y—a/JJ 2

if 2(y-aZ5)<a2o2. (38b)

The comparison between the results given in Eqs. (37) and 

(38) is shown in Figure 3. The figure shows that the approxi

mate results agree well with those of Eq. (37) except for 

large e in the case of 2(y-aZs)<a2cr2. As the noise increases, 

the correlation time rapidly decreases, but the noise has no 

effect on the stability of the system.

Using the following assumption based on Eq. (29), we ob

tain

&(£)4〉= G(t)2〉［G(t)2〉+ a^2］,

<x(03x(0)> =［〈成)2〉+ aS］G(f), (39)

The variance and correlation function at X —0 are given 

by

-으 <x(/)2> = 2{y-aZs + a廿如，一a厶+4a2O2)}<r(/)2>

-2(l-4e2a2o2)<x(02>2. (40a)

■으 G(t)-［r-aJs-(x(t)2)-a2a2JG(t). (40b)

The time-dependent variance satisfies

颁)2〉 r ^-y<r(0)2>fez 1 = 9 f un
<8(0)2〉［ a'-b'«硏」-exp 2" (41)

where

W = y一就 + e2a2o2(Y 一皿+4a2a2), b' = 1—4e2a2a2. (42)

In the lO limit we may rewrite Eq. (41) as

/rm2\ = G(0)2〉(y-a/s) exp 2印一以)$ 応、 

Y—a7$ + G(0)2〉［exp 2(丫一弦)"口 *

Figure 4 shows that for small e the results given in Eq.

Figure. 5. The comparison of correlation functions at the unsta

ble steady state given in Eqs. (45) and (46). The heavy dotted 

and heavy solid lines denote the approximate results of Eq. (46) 

for (y—afs) >(and <) a2a2, respectively. The dotted and solid 

lines are the results of Eq. (45) for (y—a/s) >(and <) a说 re_ 

spectively. The values of parameters are y=2, a=0.3, <x(0)2> = 

0.01 and o=2.2. The light intensity 4=3 (and 6) is taken for 

y—a4>a2o2 (y—aZs<a2a2).

(41) and (43) correspond well each other. For loo, the va

riance of Eq. (43) corresponds to that of the steady state 

given in Eq. (29), that is,

lim <x(f)2> = <x2>s = 丫 一 a厶. (44)
/—*oc

Eq. (44) means that the assumption of Eq. (39) is quite rea

sonable after long time. Substituting Eq. (43) into Eq. (40b), 

we have

G(t) = G(0)2〉［ Y —a厶+ G(o)2〉結爲 2印一或)£一 口 ］

X exp(y—aZs — a2a2)/. (45)

After long time the correlation function reduces to

G(t)늬: <x(0)2>(y 一 心］1/2 exp 一 a2o2/. (46)

The correlation function of Eq. (46) is quite different from 

Eq. (10) because the linear term is offset by a nonlinear 

term and then the noise strength term remains only. The 

above result clearly shows that the noise stabilizes the un

stable steady state. An example of the correlation function 

of Eqs. (45) and (46) is shown in Fig. 5. In the region of 

short time Eq. (46) are quite different from Eq. (45). After 

long time, however, the approximate result agrees well with 

that of Eq. (45).

Conclusions

We have studied the statistical properties of the Schldgl 

model with the first order transition when an external noise 

acts on the model. Let us summarize the main results of 

the present paper:

(1) The Fokker-Planck equation given in Eq. (18b) was 

obtained by the wide band perturbation method. Some re
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suits have been reported by using the different perturbation 

method, that is, the approximate Fokker-Planck operator or 

the approximate renormalized equation of evolution for the 

Gaussian white noise.13~18,23 The results except that of Ha- 

nggi et al}6 correspond to the present result for the long 

time when the transient effects are neglected.

(2) If 2(7—04)>a2o2, the stationary probability distribution

is a binodal Gaussian distribution with the maximal peaks 

at ± [y—aZs—a2o2/2jl/2. The peaks indicate that the deter

ministic stable steady states ± [y — aZsT72 are shifted to ± 

[y—aZs — 1/2 by the noise strength in the e^co limit.

When 2(Y—aZs) = c『S, the distribution becomes Gaussian 

with the peak at x=0. As the light intensity or the noise 

strength increases further, it becomes a delta-like distribu

tion.

(3) The noise strength decreases the correlation time be

tween the fluctuating macro용copic variables when the system 

is at the stable steady state. It has no effect on the stability 

of the system. When the noise of very strong 아rength is 

applied to the system, the order of the system based on 

the deterministic equation is destroyed and thus the validity 

of the Fokker-Planck equation is a question to be solved.

(4) The simple result of Eq. (45) directly shows that the 

external noise stabilizes the unstable steady state.

We have pointed out some results of the present work. 

Let us mention the important points which were not consid

ered:

(A) The external noise, which satisfies the non-Gaussian 

아ochastic process, may give rise to phenomena which do 

not occur for Gaussian white noise.10'11,24

(B) When internal and external fluctuations act simulta

neously on a system with small size, both effects on the 

nonequilibrium behaviors of the system have to be discussed 

together.

The present model will be extended by using the two 

points mentioned above.
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