DOI QR코드

DOI QR Code

Determination of Net Atomic Charges Using a Modified Partial Equalization of Orbital Electronegativity Method V. Application to Silicon-Containing Organic Molecules and Zeolites

  • Published : 1995.10.20

Abstract

The parameters for an empirical net atomic charge calculation method, Modified Partial Equalization of Orbital Electronegativity (MPEOE), were determined for the atoms in organosilicon compounds and zeolites. For the organosilicon family, the empirical parameters were determined by introducing both experimental and ab initio observables as constraints, these are the experimental and ab initio dipole moments, and the ab initio electrostatic potential of the organosilicon molecules. The Mulliken population was also introduced though it is not a quantum mechanical observable. For the parameter optimization of the atoms in the aluminosilicates, the dipole moments and the electrostatic potentials which calculated from the 6-31G** ab initio wave function were used as constraints. The empirically calculated atomic charges of the organosilicons could reproduce both the experimental and the ab inito dipole moments well. The empirical atomic charges of the aluminosilicates could reproduce the ab initio electrostatic potentials well also.

Keywords

References

  1. J. Comp. Chem. v.8 Chirlian, L. E.;Francl, M. M.
  2. J. Comp. Chem. v.9 Hammarstrom, L.;Lilijefors, T.;Gasteiger, J.
  3. J. Comp. Chem. v.5 Singh, U. C.;Kollman, P. A.
  4. J. Comp. Chem. v.5 Lavery, R.;Zakrzewska, K.;Pullman, A.
  5. J. Comp. Chem. v.9 Houser, J. J.;Klopman, G.
  6. J. Chem. Phys. v.23 Mulliken, R. S.
  7. ibid v.23
  8. J. Phys. Chem. v.82 Momany, F. A.
  9. J. Comp. Chem. v.2 Cox, S. R.;Williams, D. E.
  10. Chemical Nonds and Bond Energy Sanderson, R. T.
  11. Tetrahedron v.36 Gasteiger, J.;Marsili, M.
  12. J. Am. Chem. Soc. v.107 Mjortier, W. J.;Genechten, K. W.;Gasteiger, J.
  13. J. Phys. Chem. v.94 No, K. T.;Grant, J. A.;Scheraga, H. A.
  14. J. Phys. Chem. v.94 No, K. T.;Grant, J. A.;Jhon, M. S.;Scheraga, H. A.
  15. J. Comp. Chem. v.14 Park, J. M.;No, K. T.;Jhon, M. S.;Scheraga, H. A.
  16. J. Comp. Chem. v.16 Park, J. M.;Kwon, O. Y.;No, K. T.;Jhon, M. S.;Scheraga, H. A.
  17. J. Comp. Chem. v.9 Abraham, R.;Grant, G. H.
  18. ibid v.9
  19. J. Phys. Chem. v.80 Cohen de Lara, E.;Tan T. N.
  20. J. Catal. v.55 Mortier, W. J.
  21. J. Phys. Chem. v.94 No, K. T.;Grant, J. A.;Jhon, M. S.;Scheraga, H. A.
  22. J. Kor. Chem. Soc. v.23 No, K. T.;Jhon, M. S.
  23. J. Phys. Chem. v.85 No, K. T.;Chon, H.;Ree, T.;Jhon, M. S.
  24. J. Phys. Chem. v.91 No, K. T.;Kim, J. S.;Huh, Y. Y.;Kim, W. zk.;Jhon, M. S.
  25. J. Phys. Chem. v.93 No, K. T.;Huh, Y. Y.;Jhon, M. S.
  26. J. Phys. Chem. v.69 Huheey, E.
  27. Gaussian 90 Frisch, M. J.;Head-Gordon, M.;Foresman, J. B.;Trucks, G. W.;Raghavachari, K.;Schlegel, H. B.;Robb, M. A.;Binkley, J. S.;Gonzalez, C.;Defrees, D. J.;Fox, D. J.;Whiteside, R. A.;Seeger, R.;Melius, C. F.;Baker, J.;Kahn, L. R.;Stewart, J. J. P.;Fluder, E. M.;Topiol, S.;Pople, J. A.