A24 2% v Performance Study of the Index-based Parallel Join 87

Performance Study of the Index-based Parallel Join

Byeong-Soo Jeong
Edward Omiecinskis

Abstract

The index file has been used to access database records effectively, The join operation in
a relational database system requires a large execution time, especially in the case of handling
large size tables. If the indexes are available on the joining attributes for both relations involved
in the join and the join selectivity is relatively small, we can improve the execution time of the
join operation. In this paper, we investigate the performance trade-offs of parallel index-based
join algorithms where different indexing schemes are used. We also present a comparison of our
index-based parallel join ulgorithms with the hash-based parallel join algorithm.

1 Introduction

The join operation has received much attention in the research community due to the fact that it
gives semantic importance and also requires a large execution time in a relational database system.
Generally, three major paradigms (i.e., nested-loops, sort-merge and hash-based) have been widely
used to impiement such a join operation.

Though many algorithms have been proposed to process the join operation as efficiently as
possible, the join operation remains an expensive operation in relational database systems. One
way to achieve significant improvements in vr&sponse time of a join operation is to parallelize the
join processing, that is, to use multiple processors to join two relations concurrently. Similar to

other parallel processing algorithms, the parallel processing of a join involves three steps:
1. decompose the join into n tasks,
2. assign those tasks to p processors, and

3. assemble the results as the join result.
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In order to achieve the best performance for parallel join algorithms, a balanced task decomposition
(step 1) is very important. Several techniques (such as Bucket Size Tuning in parallel hash-based
join, etc.) have been suggested to solve the load balancing problems in parallel join algorithms.

Another way to improve the execution time (reduce I/Q cost) of a join operation is to use
an index. If the indexes (primary or secondary) are available on the joining attribute(s) for both '
relations involved in the join, we can extract the information about joining tuples by scanning the
index files only, without reading the entire data files. Since the index files are much smaller than
the data files in most cases, it will reduce I/O time significantly.

In uniprocessor environments, several performance studies of join algorithms using indexes
have been done in the paradigm of the nested-loop approach, but not much work has been done
in a parallel database environment. In this paper, we study the aspect of parallel join processing
algorithms when the indexes are available on the joining attribute(s) for both relations involved
in the join. As a target indexing scheme, we consider our parallel indexing schemes which are
illustrated in [2]. We investigate the performance trade-offs of parallel index-based join algorithms
where different indexing schemes are used. We also present a comparison of our index-based parallel
join algorithms with the parallel hash-based join algorithm.

In the next section we discuss the previous work that has been done with respect to the parallel
join algorithms. In section 3, we describe the parallel index-based join algorithms which use the
parallel index files illustrated in [2] In section 4, we present an analytical cost model intended to
predict the performance of each parallel join algorithm. In section §, we discuss the optimal buffer
allocation strategies in the case of bucket partitioning and N-way merging for the parallel join
operations. We also describe the experimental results from our analytical cost model while varying

several parameter values in section 6. Finally, we discuss our conclusions in section 7.

2 Previous work

Since the join is the most frequently‘used and the most time-consuming operation in a relational
database system, much work (3, 4, 5, 8, 9, 10] has been directed to finding efficient parallel join
algorithms under several multiprocessor architectures. The previous work can be roughly divided
into two groups; one group deals with the basic parallel join methods and their performance, and
the other group emphasiies the handling of data skew in the join operation in order to further
improve the performance.

In [8], DeWitt et al. investigated the performance of four parallel hash join algorithms while
implementing them on GAMMA, a shared-nothing parallel database machine. Omiecinski proposed
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a load balancing join algorithm for a shared-memory multiprocessor and analyzed its performance
in [5). In [9, 10}, Wolf et al. considered the performance of the parallel hash join and sort-merge
join algorithms in the presence of data skew.

To the best of our knowledge, only [1, 7] deal with index-based join processing in a parallel
database environment. In [7], Omiecinski suggested heuristic algorithms for reducing I/O costs
when the buffer space is limited. His work considered the shared-memory multiprocessor architec-
ture for a target system. In [1}, DeWitt et al. presented four variants of index-based parallel join
algorithms in a shared-nothing environment. They also compared the performance of four variants
by analytical modeling and implementation in the Gamma parallel database system.

Our work can be differentiated from the above work by the following aspects.

o We consider a shared-nothing environment (different from (7]).
e We assume that indexes are available on each relation’s attributes (different from [1}).

e We consider our parallel indexing schemes (different from [1, 7)).

3 Index-based Parallel Join Algorithms

In this section, we d&séﬁbe index-based parallel join algorithms which use the parallel index files
illustrated in [2]. As in [2], we consider a shared nothing architecture where processing nodes are
connected by a scalable interconnection network. We also consider the equi-join operation with the
convention that the two‘relatiops being joined are R and S, and that the join condition is R.A =
S.B. We assume that the relations R and.S are declustered over all the nodes on attributes other
than R.A and S.B. We also assume that the indexes are available on the joining attributes for
both relations (R.A and S.B) involved in the join. Typically, the indexes are implemented as B+
trees. The leaves of B+ tree contain entries that consist of a key value and the addresses (RIDs)
of all tuples in a relation which contain that key value. By using the joining attributes’ indexes
of the two relations we can determine -the RID list that contains pairs of RIDs which show the
tuples to be joined. In uniprocessor systems, an index-based join algorithm looks very simple. By
comparing the leaves of B+ tree indexes built on the joining attributes of two relations, the RID
list is generated. Then retrieval of joining tuples is performed from the RID list. At this time, the
page connectivity graph model [7] can be applied for reducing I/O cost in the case of limited buffer
space.

In a shared nothing parallel system, we should consider declustered indexes and tables. {relations)

over the nodes in order to get the correct RID list and retrieve the joining tuples which would be
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scattered over the nodes. Our index-based Vpa.ra.llel join algorithm consists of several processing
steps. First, in order to make sure that all pairs of index entries are examined, the index entries
are redistributed or replicated at each node. After this, the local join is performed in parallel with
the redistributed or replicated index fragments. For the local join, we can use traditional join
algorithms (such as sort-merge and hash join). The RID lists are generated from the local join at
each node. Figure 1 describes this step.

As previously mentioned, tuples pointed by the RID list are scattered over the nodes. Therefore,
we need to redistribute the entries of the RID list based on the value of the RID (we assume that
the RID has node information, e.g., node 1 hoids RO01 ~ R500 and node 2 holds R501 ~ R1000)
so that we can read the joining tuples locally. In order to optimize the page access of reading the
joining tuples, the' RID list is sorted by the RIDs of the relation which is intended to be read.
Figure 2 illustrates this step.

Depending on the parallel indexing schemes, detailed procedures of each processing step would
be different. We will consider our two parallel indexing schemes in following sections.

3.1 Using Local Indexes

In the local indexing scheme, we can think of two possibilities for getting a correct RID list, indez
JSfragment replication and indez fragment redistribution. The most obvious solution is to broadcast
all index fragments (leaves of B+ tree index) of the smaller relation (R) to every node and join
them with the local index fragment of the S relation (see Figure 1(b)). The other alternative is
that index fragments of R.A and S.B are redistributed, such that for any index entry of R.A that
joins with some index entry of S.B, both index entries are at the same node (see Figure 1(c)).

Index fragment replication has the disadvantage that all index fragments of R.A are shipped to
nodes where there may be no matching index entries of S.B. This cost may be non-trivial if the size of
R.A’s index fragments is relatively large. On the contrary, index fragment redistribution can avoid
this wasted effort by eliminating unnecessary pairs of index fragments through the redistribution.
In the case of index fragment redistribution, it is important that equal sized portions of the indexes
be assigned to each node for load balancing. As a way of redistribution, a hash function and key
value range can be applied.

From another view, index fragment replication does have some good points; since a local index
stores all the key values and RIDs for the relation fragmexit which is stored locally, joining tuples
of S can be retrieved locally. However, in the case of index fragment redistribution, the retrieval

of joining tuples requires additional communication cost since the tuples can be scattered over the
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nodes. We will see such tradeoffs by using the analytical cost model in section 6.

3.2 Using Partitioned Global Indexes

In the partitioned global indexing scheme, the global index tree is partitioned by several criteria
(such as the range value and hash function value) and distributed across the nodes. We can take
advantage of this information for the index-based parallel join operation. The best case is that, if
the indexes of R.A and S.B are partitioned and distributed by fhe same criteria, there is no need to
replicate and redistribute the index fragments. Even though the partitioning criteria are different
in both indexes, only one of the index fragments (R.A and S.B) needs to be redistributed according
to the partitioning criterion of the other index.

In the partitioned global indexing scheme, the tuples pointed by one index fragment can be
scattered across the nodes. For this reason, the index fragment replication method does not give
any advantage in terms of execution cost. Thus, we will not consider index fragment replication in

the case of the partitioned global indexing scheme.

4 An Analytical Cost Model

In this section we describe an analytical cost model intended to compare the performance of each
algorithm. We include the cost model of the parallel hash join algorithm {Grace-hash) in order to
see the break point where the index-based algorithm performs better. We separate the cost of the
algorithm into I/O, CPU, and Communication while assuming that CPU and I/O processing are
not overlapped. For simplicity, we assume that the relations (R and S) and the joining tuples are
evenly distributed across the nodes. We also assume that R is the smaller relation. Throughout

the analysis the parameters shown in Table 1 are used.

4.1 Index Fragment Replication with Local Indexes

(1) Index Replication

For the index replication, each node reads an index fragment of R.A (IR;) into the input buffer (By),
broadcasts it to all the nodes through the communication buffers (Bc), and writes the broadcasted
index fragments of R.A to each local disk through the output buffer (Bo). Let By, Bo, and Bc
be the sizes (in number of pages) of the input, output, and communication buffers respectively. At
this step, the following I/O cost and communication cost will be needed at each node.
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Table 1: Parameters in the Cost Model

Parameters Description
n * Number of nodes in a system
R Size of relation R in number of pages (R; = R/n)
S Size of relation S in pumber of pages (S; = S/n)
r Number of tuples in R (r; = r/n)
s Number of tuples in S (s; = s/n)
IR Size of leaf pages of B+ tree index on R.A (IR; = IR/n)
IS Size of leaf pages of B+ tree index on S.B (IS; = IS/n)
M Number of memory pages at each node
RID Size of RID list in pages (RID; = RID/[n)
rid _ Number of RID pairs in RID list (rid; = rid/n)
SR, 8§ Semijoin selectivity factors
JS Join selectivity factor
JS =10-maz(22, 28) [6] (rid = JS -7 - 5)
Y(k,m,n) Optimal number of page I/O’s for accessing k records randomly
distributed in a file of n records stored in m pages [6).
Toccess Average disk access time (seek time + rotational latency)
Ttrensfer One page data transfer time
comm Time in sending/receiving a packet
comp Time in comparing two tuples and moving a tuple
hash Time in computing the hash value of a tuple and moving a tuple
probe Time in probing hash table




A24 2% Performance Study of the Index-based Parallel Join 95

I/0 cost is
I/Oco:t = f ] (Taccc.u + By - Ttransfer) + r ] (Tacccss + Bo - Ttrana]er)

under the condition that
IR;=IR/n and Bf+Bo+{(n~1)-Bc<M

In order to minimize the above sequential I/O cost, the values of By, Bo, and Bc should be carefully
chosen. The problem of optimal buffer allocation for sequential 1/0 is discussed in section 5.
Communication cost is .

COMM_pyt = comm - (n—1) - IR;

(2) Local Join by using Index Fragments (Generate the RID list)

For the local join, we can use the sort-merge technique since the leaf pages of the B+ tree index
are already sorted by the key value. Thus, we need to read I'S; and IR once and write the RID list
onto the disk.

I/O cost is

I/Opst = ‘JS'] * (Taccess + Br - - Ttransfer) + [‘I'!'f'] * (Taccess + Br - Teransfer)
[RID'] * (Taccess +Bo- Tiransfer)

with the condition that
RID; =RID/n and (n+1)-B;+Bo <M

CPU cost is
CPU_ ot = comp-r

(3) Read the Joining Tuples of S from the RID list

(a) Sorting the RID list by S.B: At this step, we need to first sort the RID list by S.B values
for the optimized access of S data pages. We assume that the RID list is not too big (i.e., join
selectivity is small) to fit in memory. By this assumption, the sorting cost can be calculated as
follows.
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I/0 cost is
RID;

I/Ocost = [—BT] . (chccu + Bl . Ttram]cr) )

CPU cost is
CPUcst = 2+ comp - s; - SS - [log, s; - SS|

(b) Accessing the data pages of S at each node
I[Ocont = Y(3i - S8, S;, i) - (chce_n + Ttmm!q-)

(4) Read the Joining Tuples of R from the RID list
Since the joining tuples of R are scattered over the nodes, we need to send the RID list to the
corresponding node. Then, the retrieval of the R tuples is performed as the above. The cost of this
step is

COMMopt = comm - (n — 1) - RID;

(a) Sorting the RID list by R.A:

RID;
I / Ocou = f‘fl—'] . (Toccc.u + Bl " Ttramfer)

CPUcoqt =2 - comp.- v - SR- [logy i~ SR]

(b) Accessing the data pages of R at each node: - .
I/Ocost =Y (ri - SR, Ri,7:) - (Toccess + Ttramfcr)

4.2 Index Fragment Redistribution with Local Indexes

(1) Index Redistribution

As previously mentioned, we use the hash fupction value or key range value for the index redistri-
bution. In the case of range partitioning, tﬁe prior 'infdrmation about the key value distribution
is needed to evenly distribute the index fragments among the nodes. We assume that the hash
function is used-for the index redistribution. At this stép, we need to read the index fragments of
R.A and S.B, apply the hash' function.to*the key value, and then, distribute the index entries to

the corresponding node.
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Therefore, 1/O cost is

IR; IR;
I/Ocost = i] . (Tacccu + Bl . T‘tramfer) + fi‘l : (Taccess + BO : Ttranafer)
IS, IS,

+ [ ] (Tacceu + BI T'tran:fcr) + [ ] Taccesa + Bo - Tlranslef)

with the condition that
Br+Bo+n-Bc<M

CPU cost is

Communication cost is
COMM o5t = comm - (n—1) - (IR; + 18;)

(2) Local Join by using Index Fragments (Generate the RID list)

For the local join, we use a hash join since the sorted sequence of leaf pages can not be kept
during the redistribution. Since we consider a large size of input relations, it is possible that the
index fragments (leaf pages) will not fit in memory for a hash table. Thus, we partition the index
fragments into small buckets which fit in memory and then perform a bucket join.

(a) Bucket Partition:

I/0 cost is

I/Oco.lt = f ] (Twun + BI Ttramfcr) + ["'_] (Taccus + BO Ttransfcr)

+ I.IS, IS.

] (Tacuu + By - Ttran:!er) + r ] (chceu + Bo - Ttram/er)
with the condition that
Br+h-Bo <M (h=number of buckets)

CPU cost is

CPUyost = hash - (r; + ;)
(b) Bucket Join:
I/0 cost is

I/Oco:t = f ] (Tocceu + By - Ttran:fer) + [ ] (Tocccu + By - Ttrnnsfer)
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RID;
+ TB—O'] ° (Tnccess + BO : T(rans!er)

with the condition that
B;+Bo+ HASH <M (HASH =size of hash table)

CPU cost is
CPU,oyt = hash - r; + probe - s;

(3) Read the Joining Tuples of R and S from the RID list
In this case, the tuples of R and S givén in the local RID list can be found anywhere. So, we need
to redistribute the RID list based on the RID of r (or s). I/O cost is

RI D,

I/Ocost = [ ‘l (Taccess + B1 - Tirans fer)

with the condition that
Bi+n-Bc<M

CPU cost is
CPUecost = comp -1 or comp- 8;

The remaining cost will be the same as the case of the index fragment replication.

4.3 Index Fragment Redistribution with Partitioned Global Indexes

For tbe partitioned global indexing scheme, the cost model will be almost the same as in the case
of using the local indexing scheme except that the index redistribution cost should be eliminated
from the total cost.

4.4 Parallel Hash Join

In this section, we include the cost model for the parallel hash join with the assumption that the
indexes are not available on the joining attributes and the input relations (R and S) are very large
(compared to the available memory size). We use a parallel grace hash join for the cost model.
(1) Redistribution

Initially, the tuples of R and S have to be redistributed so that each node can perform a local join
operation independently.
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I/0 cost is

I/Ocost = [Bﬁ’] * (Tacceu + BI ° nransler) + rg‘;] ‘ (Tacceu + BO M Ttran;fer)

S; S;
+ [-B—I] * (Tocee.u + By - Ttram[er) + I""é';] * (Tncceu + BO . Ttram[cr)

CPU cost is
CPU,ost = hash - (r.- + s,‘)

Communication cost is
COMM_py = comm - (n—1) - (R; + S;)

(2) Bucket Partition
In order to prevent hash table overflow, R and S are divided into several buckets that fit in memory.
I/O cost is

I/Ocou = f%] M (Tobce'n‘ +By- Ttrmulcr) + r%l ° (Tacuu +Bo- Ttram!cr)
S; S;
+ f—B—'1 : (Tmu + By - Ttrmufcr) + I'-B—’l * (choen +Bo- Teramler)
I o
with the condition that
Br+h-Bo <M (h=number of buckets)

CPU cost is
CPUeet = hash - (r; + ;)

(2) Bucket Join
1/0 cost is

I/Omt = r‘g‘;] * (Tocau + B;- Ttran:fer) + I-E‘;] * (Tacccu + B;- Ttrcmfer)
with the condition that
Br+ HASH <M (HASH = size of hash table)

CPU cost is
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5 Buffer Allocation for Sequential I/O

Sequential I/O is effectively used in certain database operations such as join and sort, which read a
large number of contiguous data pages from disk. When a parallel join 6peration is applied to very
large relations by a hash-based method, v‘it requires a bucket partitioning step which distributes
input relations into several buckets. In the case of the parallel sort-merge join operation, a multi-
way merging step is needed for sorting large input relations. The I/O pattern of bucket partitioning
a.ﬁd multi-way merge is almost the same, ﬂexeépt for the I/O direction. ‘

In order to facilitate the sequential I/O advantage during bucket partitioning and multi-way
merge, we need to-allocate buffer space efficiently. For example, if we increase the value of N (see
Figure 3), the number of merge passes will decrease. On the contrary, the cost of merging at each
step can increase Qith increasing N since we have fewer pages for each buffer slot with a larger
N. The optimal choice of N will depend on many factors, such as available memory size, disk
capacity (access time and data transfer time) and file size. Additionally, we see that thé size of the
input/output at each merging step isldiﬂ’erent. During the merging, N sorted runs are read into the
input buffer and merged into one sorted run through the output buffer. Thus, the size of the output
is the total size of N input runs. This means that the same buffer allocation for input/output will
not give the optimal performance. We must also consider the difference of input/output size during
the buffer allocahon. In the following section, we will examine in detail how to determine the

optimal N and the buffer allocation for input/output.

5.1 Choosing the optimal N

In order to choose the optimal N, we need to analyze the cost of the N-way merge sort under
the given buffer allocation. Here, we consider the case of soning.very large files that are several
orders of magnitude larger than main memory. In this case, we can assume that the CPU time is
negligible and can evaluate the sorting cost in terms of the disk I/O time. The I/O cost for the
external N-way merge sort consists of the cost. for generating initial runs and the cost for merging.
Also, the time for the run generation is independent of N, the merge order. Since our goal is to
choose the optimal N, we will ignore the initial run generation cost in our analysis.

Given the buffer allocation as in Figure 3 (M buffer pages are divided into N slots which have
W pages each; N — 1 slots are used for readiﬁg input runs, and 1 slot is used for writing merged
output), we need [logy_, R] merge steps and at each step we need to read/write the whole file in
blocks of W pages. The size of an initial run is M pages (M = available memory size) as previously
assumed. The whole file size would be M - R (R = the number of initial runs). Thus, the I/O cost
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Input Output

e WL MaN*W

Figure 3: Buffer Allocation for N-way Merge Sort

during merging will be as follows (Toccess = disk access time, Tyransger = data transfer time for one
page): ‘
. M-R
I/Omerge =2. nOSN—l R] : [_"”_] ° (Tcaccss +W. Ttramfer) (1)

Claim 1 (Optimal N): If there are M pages of available buffer space for the external N-way
merge sort, then the external N-way inerge sort whose N value satisfies the following condition
yields minimum sequential I/O cost.

N-(InN-1)= T‘—'i'ﬂli'- M ()

acceu

Proof: The sequential I/O cost for the N-way merging is represented as Equation 1 under-the
given buffer allocation (Figure 3). For simplicity, we can eliminate the ceiling function ([ J) without
losing the accuracy since we consider large input files. Also, we can replace logy_; R by logy R
if we assume that N is reasonably large (e.g., lOélg 1000 =~ 2.346 and log,; 1000 = 2.305). The
simplified equation becomes the following:

M-R
I/Omcrge = 2-logyR- —W—' *(Taccess + W - Ttramjer)

M
= 2-logy R-(N-R) - (Toccess + N *Tiransfer) <= (M =N-W)
2-R. logN R-(N-Toccess + M - Ttmmfa‘)
2-R-—— (N Tacceu +M- Ttramfer) (3)

lnN

With the assumption that the input file is much larger than the memory buffer and the memory
buffer is reasonably large (i.e., more than 100 pages), we can approximate the discrete case by

computing the continuous one. After differentiating Equation 3 by N, setting the result to zero to
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Figure 4: 1/O Cost with Different W Values

find the minimum gives:

_2.R-lR

= ¥ N 0N - Tacsis = N - Tacoess = M - Tirenaer) (4)

0

Since R#0, N #0, and M #0,

0=(N-lnN'Tm”-N'checu-M'Ttrcnslcr)
= N-(mN-1)=1'ﬁf_gu.M

Thus, Equation 2 satisfies the condition which suffices to yield minimum sequential I/O cost for
N-way external sort. ‘

Our analysis shows that the optimal N depends on the available memory size and disk capacity
(disk access time and data transfer time) but is independent of the input file size. The available
memory size &etermina the optimal N because the disk capacity can be treated as constant. Even
though our analysis was obtained by approximating the discrete case with the continuous one, we
can find a nearly optimal N from Equation 2. Figure 4 represents the variance of 1/O cost with
the different W(W = M/N) values. '
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Input Output

Bll-l 'N

Figure 5: Buffer Allocation for Input/Qutput

5.2 Buffer Allocation for Input/Output

Another thing to be considered in the buffer allocation for the external N-way merge sort is the
fact that the size of the input/output at each merge step is different. As we see from the previous
example, the I/O cost can be reduced if we consider each operation’s file size. In this section, we
will look into the relationship between the buffer allocation and file sizes.

Claim 2: Consider the case where we need K buffer slots for input/output at one time, the file
size which is read or written through the i-th buffer slot is F;, and the number of blocks allocated
to the ¢-th buffer slot is B; (Figure 5). If we allocate B; as follows, we can achieve the minimum

sequential I/O cost.
h_FB_FH . F_". (5)
Bf"B] B T B}

Proof: If we allocate B; blocks to the i-th buffer slot, then the I/O cost will be:

I/Omt = |' ] (Tacoeu + By - Ttrcmfer)

+ [ ] (aneu + B; - Ttram!er)
+
+ [ ] (Twceu + By - Tu-cm!er)

F'
er:] * (Taccess + Bi - Ttramfer) (6)
i=1

For large F;, we can eliminate the ceiling function (] ) without loss of accuracy.

I / Ocost = Z (Tocee.n + B;- Ttron.l[er) (7)
!-l
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Also, if M is the total size of available memory, there is a condition such that
M=By+By+---+ Bg. (8)

Now we can minimize the I/O cost (Equation 7). subject to Equatibn 8. For convenience, we
assume that the B;’s do not have to be integers. If we increase a B; by ¢, then some other B; might
decrease by e according to Equation 8. The difference in the I/O cost after this change is shown

below.

I(Ocost(before) = Z: * (Toccess + Bk Ttransser)

k=l
K p
I/Ocost(after) = Z B (Tawcu + Bk - Ttransfer)
k=1k#ik#s
F;
+ * (Taccess + (Bi + e) Ttram!cr)
(Bi+¢)
F; .
+ = (Toccc'u + (Bj - e) ¢ Ttronafer)
- (Bj-¢

I/Ocout(difference) = I/Ocont(after) — I/Oconfbefore)

= Taen GGy~ B B e~ B

T _((17,15;2 F;B})e + (F;B; +FB)e
T Tocees Bi(B; +€)B;j(B; — ¢)
(=0 since ¢ is very small)

T .( (F;B? - F.B,’)e

T Teccess Bi(B; + e)B,-(B,- —-¢€)

Thus, if Fj - B} # F; - BJ?, there can be an I/O cost improvement.' Therefore, the minimum I/0

cost occurs when Equation 5 holds.

Now, we apply this condition to our problem of input/output buffer allocation for the N-way
external sort (Figure 5). The assumption that we are doing an N-way merge where the size of N
input runs are all the same gives (B; = # of blocks for i-th input buffer, By, = # of blocks for
output buffer, M = total available memory size, F; = inp@t run size, and Fy,;; = merged output

size):

By +By+4---+By1+By+Boyuy =M
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Table 2: Values of the System Parameters

Parameters: Values Description

Toccess 20 msec. Average disk access time

Tiransfer 2 msec. - One page data transfer time

comm 0.1 msec. Time in sending/receiving a packet

comp 0.005 msec. Time in comparing two tuples and moving a tuple
hash 0.008 msec. Time in hashing a tuple and moving a tuple
probe 0.01 msec. Time in probing hash table

R+F+ -+ Fy_1+ Fy=Fou
Fi=F=.-=Fy.1=FN, Fou=N-F

Since all F;’s are the same, we know that all B;’s will be the same for the optimum condition. By

Equation 5, we know

%:%ﬁ = gg 122’?. Thug, out = VN - B;.
Also,
M =Bot+N-B;=Bout+ N- 22 = B, . (VF +1).
vN
Therefore,
Bw.-(‘/_ 2)-M and Bi= (IC’—(T;—‘_/%)-M. | (9)

As previously mentioned, we can get a nearly optimal B; and B, even though it approximates
the discrete case with the continuous one. For example, if N = 9 and M = 48 pages, then By =
12 pages and B; = 4 pages will be the optimal buffer allocation for input/output.

6 Experimental Result

With the values of the system parameters shown in Table 2, we examine the performance effect
of other parameters. Figure 6 shows the effect of varying memory .siz'e. As previously mentioned,
sequential I/O is used for reading/writing the contiguously stored data pages. As we see from
Figure 6, the execution cost of the parallel hash join algorithm is significantly reduced with thé
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Figure 6: Effect of Available Memory Size .

increase of available memory. In the parallel hash join algorithm, a small memory size causes
hash table overflow more frequently. Thus, a memory increase can reduce the I/O cost of overflow
data significantly. Another reasoxi is that this algorithm requires several table scans for data
redistribution and bucket partitioning and that a large memory allows the reading of many data
pages at one disk access. We also see that the cost reduction is negligible after 500 memory pages.
This is because hash table overflow does noi occur after this point.

As for the parallel index-based join, the effect of a memory increase is not noticeable compared
to the parallel hash join. This is because the hash table overflow does not occur during the local
join with index leaf pages. Furthermore, when we retrieve the joining tuples, we should read data
pages one by one because the sequence of data pages might not be contiguously stored in the disk.
So, it can not utilize large memory very well.

- Among the iqdcx-basgd algorithms, index redistribution methods perform better. The reason
for this is that, as indicated in section 3, unnecessary index fragments can be avoided in the index
redistribution method. The small gap between the local index and the partitioned global index
comes from the cost of index fragment redistribution. But this is not too great compared to the
cost of retrieving the joining tuples from the data pages of R and S.

Figure 7 shows how the performance improves with a greater number of nodes. Since the size
of local data fragments (indexes and tables) are reduced with the increase of nodes (the increase
of nodes also implies the increase -of total membry size in a systexﬁ), the execution cost of each
algorithm is reduced as much. As we see from Figure 7, the parallel hash join algorithm shows a
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Figure 7: Effect of Varying Nodes in a System

noticeable performance improvement between 10 and 40 nodes compared to the other algorithms.
The reason for this is that hash table overflow is significantly reduced in that range.

Figure 8 shows the effect of the join selectivity factor. As expected, the execution cost is
increasing with the increase of the join selectivity factor in the index-based join. This increase is
not exactly proportional to the increase of thé Jjoin selectivity factor due to the optimized access
of pages during the retrieval of the joining tuples. We also see that if the join selectivity factor is
smaller than 5.0 x 108, the index-based join will be the the best choice of the join algorithms.

7 Conclusion

In this paper, we analyzed the execution cost of the index-based parallel join algorithm and the
ordinary parallel hash join algorithm. Our results show that the parallel hash join algorithm is
more sensitive to the available memory size than the index-based join algorithm. Our investigation
also shows that if the join selectivity factor is relatively small and the available memory is not large,
then the index-based parallel join method is the best method for joining large input relations.
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