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1. Chinese Remainder Theorem

The kind of problem that can be solvd
by simultaneous congruences has a long
history, appearing in the Chinese literature
as early as th first century A.D. Sun-Tsu
asked: Find a number which leaves the
reminders 2, 3, 2 when divided by 3, 5, 7,
respectively. (such mathematical puzzles
are by no means confined to a single
cultural sphere; indeed, the same problem
occurs in the Introductio Arithmetica of
the Greek mathematician Nicomachus, circe
100 A.D) In of their early

contributions, therule for

honor
obtaining a
solution usually goes by the name of the
Chinese Remainder Theorem [1].

Theorem (Chinese Remainder Theorem).

Let #n,, n,, --*, », be positive integers such

that ged(n;, »;) =1 for i#*j. Then the

system of linear congruences

=a,(mod n,),

x =ay(mod ),

X Ear(mOd nr)

has a simultaneous solution, which is
unige modulo 7, #ny *** #,.

Proof. We start by forming the product

n= mnyn, For each k=1,2, -,

v, let Npy=n/m,= m = np 1 npqy
7, in other words, N, is the product of
all integers #; with the factor #, omitted.
By hypothesis, the #; are relatively prime
gcd(V,,, n,) = 1.

According to the theory of a single linear

In pairs, so that
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congruence, it is therefore possible to

solve the congruence N,x=1 (mod #2,);

call the unique solution x, Our aim is to

prove that the integer
x= a Nyx; + a;Noxy + +++ + a,N,x,

is a simultanecus solution of the given
system.

First, it is to be observed that
N;=0(mod n,) for i+ k, since n,N;

in theis case. The result is that
; = a1N1x1 + a2N2x2 + - + a,N,x,
= q,N,x,(mod 7;)
But the integer x, was chosen to satisfy

the congfuence Nyx=1 (mod #,), which

forces

—JE ap * IEak(mod nk).

This shows that a solution to the given
system of congruences exists.

As for the uniqueness assertion, suppose

that % is any other integer which
satisfies these congruences. Then
r=a,=x (mod ny), k=1,2, ..., 7

and so #4lx —x for each value of A
Because gcd(#n;, #;) =1, ny-n,l x— x5

x=2 (mod n). With this, the
Chinese Remainder Theorem

hence,

is proven.

The problem posed by Sun-Tsu corre-
sponds to the system of three congruences

x =2(mod 3),
x =3 (mod 5),
x =2(mod 7).

In the notation of Theorem 4-8, we have
n=3-5-7=105 and

N1= n/3 =35,
N, = n/5 =21,

Now the linear congruences

35x=1(mod 3),
21x=1(mod 5),
15x=1(mod 7)

are satisfied by x; = 2, 2, =1, x3 = 1,

respectively. Thus, a solution of the

system is given by

x =2-35-2+3-21-1+2-15-1
, .

33

Modulo 105, we get the unigue solution
x = 233 =23 (mod 105).

We
description of the
remainders in [2].

detailed
Chinese problem of

can see the more

Sun-Tsu, in a Chinese work Suan-ching
(arithmetic), about the first centurt A.D,
gave in the form of an obscure verse a
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rule called t'ai-yen (great generalisation)
to determine a number having the
remainder 2, 3, 2, when divided by 3, 5, 7,
respectively. He determined the auxiliary
numbers 70, 21, 15 multiples of 5-7,
3+7, 3-5 and having the remainder 1
when divided by 3, 5, 7, respectively. The
sum 2-70+3-2 +2-15 =233 is one
answer. Casting out a multiple of 3-5-7
we obtain the least answer 23. The rule
became known in Europe through an
article, "Jottings on the science of Chinese
arithmetic,” by Alexander Wylie, a part of
which was translated into German by K.
L. Biernatzki. A faulty rendition by the
latter caused M. Cantor to criticize the
validity of the rule. The rule was defended
by L. Matthiessen, who pointed out its
identity with the following statement by

C. F. Gauss. If m = mymymy---, where

m,, My, my, °-- are relatively prime in
pairs, and if

a;=0(mod m/m;),
a;,=1(mod m;) ({=1,23,-)
then x = a7 + az7ry + -

of

is a solution

x=r(mod m,),

x= ry(mod my),

This method is very convenient when one
has to treat several problems with fixed

my, My, m3, -, but varying v, 7y, 73,

Nicomachus (about 100 A. D.) gave the
same problem and solution 23.

Brahmegupta (born, 598 A. D.) gave a
rule which becomes clearer when applied
to an example: find a number having the
reminder 29 when divided by 30 and the
remainder 3 when divided by 4. Dividing
30 by 4, we get the residue 2. Dividing 4
by 2, we get the residue zero and quotient
2. Dividing the difference 3 - 29 by the
residue 2, we get - 13. Multiply the
quotient 2 by any assumed multiplier 7
and add the product to - 13; we get 1.
Then 1-30+29 =059 is the desired
number.

This problem forms the second stage of
the solution of the "popular” problem: find
a number having the remainders 5, 4, 3, 2
when divided by 6, 5, 4, 3, respectively.
The answer is stated correctly to be 59.

Hua Loo Keng had writted the following
interesting article in his book [3].

Let us now discuss the ancient method
of solutions to this type of problem. The
solution to this problem was published as
a song in 1593, and it goes as follows:

“Three people walking together, ’tis
rare that one be seventy,

Five cherry blossom trees, twenty
one branches bearing flowers,

Seven disciples reunite for the half-
moon,

Take away (multiple of) one
hundred and five and you shall
know.”
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We recall that the problem was to solve
the  simltaneous x=2(
mod 3), x=3(mod 5), x=2 (mod 7).
The meaning of the song here is as
follows: Multiply by 70 the remainder of
x when divided by 3, multiply by 21 the

x when divided by 5,

congruences

remainder of
multiply by 15 (the number of days in
half a Chinese month) the
remainder of x when divided by 7. Add
the three results together, then

subtract a suitable multiple of 105 and you
shall have the required smallest solution.

(synodic)

and

For our specific example, we have
2XT70+3x21+2x%x15=233

and on subtracting twice 105 we have the
required solution 23.

How do we explain this ancient method
of solution, and in particular where do 70,
21, 15 come from? The answer is as
follows: 70 is a multiple of 5 and 7 which
has reminder 1 when divided by 3. 21 is a
multiple of 3 and 7 which has remainder 1
whendivided by 5. 15 is a multiple of 3
and 5 which has remainder 1 when
divided by 7. It follows that 70a+2&

+15¢ must have remainders @, b and ¢
when divided by 3, 5 and 7 respectively.

2. BEFmE BY B

Y RSB (1720~1791)L Hill 54 CF
of M43ty IEM 15%F ¥Rl frikd HE2
RfRe] BEZ MPRM 268 12ft, EHESE
& 14% TH, EBRFRE 238 181 Listal %

sl 24 WEZH wok 8BS, 2L O
BER, BE 88 BB B8 $5 A4x4
TRt RES FIT 37 Bk BRE
ol F&ESIY Bl 7S A KB
MR TR Y. BBFRS B 46) do)
RAReR @l 50401774, B4 9A
doltt. 223% 18 = =AU Fi9
P BN MEBROZ ARV AL B
Hala FHEF ZoloiA ¥l S8R |
FAATE. 2 a2 BB F SEY B
Ao RESS WEEH F3l0] KMol
A BEES fEo R MM et ¥
o 71 B BT A 821, 22, 239]
o #21, 22 BEEBAP, 8232 HEBKF
2 BHo) BT BHEEA HASREC
2 Ho 3o

BEBRFR 218 24K XEElZ1 9
Oe% 22 2P (EFRTHTE ARG

SRRk
AR EE
REEKAEER W
NUEREEHA

(FE=H=ttattthEr—tKELAh
ARTOERRR=A0 BLEEL—EAD
).

SARTETH
AEZERAH—8
A +HEUKE
XEBEBEEAK

of FEY Ft ¢lslE Hua Loo Kang
(ERPEFTSY Yo FExoz ANAA #HF9)
AMZ2 ABL 2y 39 70, 590 21, 790
= 158 #HBAIPIE RS 1062 Yirde
BAE REEY gix o3 EEY
7F o] Pstdl= o Yo ARE &
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BRIES BES = Ul FBRASS %
Fo =aIdAMx Chinese Remainder
Theoremo] 2= AlZE9 o 224
d MEYde 9% RAEY. 2L R
AE MBS BRel ol Rz @
Mo} FF2 Ao Sun-Tsw(BHRF) &g
RIB= soidch

L2 F R AR

(A HRF o LB AEMERERETREE

KBRS HRE—BARARERNZHMOR
BERERERMTERERE)

ER=+=

wE=1+F#H—Tt+E I _-_TEmE+HAEK
H—To1+—EHF=TATZEHH—T+
AEF=-T=1T)=Z=Hz—E5=1t=#H—5
AREZ EERE—ELR-T=RENG
—EARMIE)

7] M UEe 70, 21, 155 ¢ #Hr
o] fofl A= 35:2=1(mod 3), 21=1
(mod 5), 15=1(mod 7)°lt}. o+ 25%
ol = EH¥ES] 8ol ALt

SEMHEZHARBARER L BBRMTE
REVL=FEAACHEBS=tAM=XRZ
BIER—BAG=STABETR= R B
—FL=8F—Tt+@EUAREH=tH
BA-t+—RAaEzBR—FUARE—-T=+
—(B)UEBEA=AHAB~TAMLtEZ
BB~ T —tTAE=ALBKRER
B—ERABBEAIR—BEAMEZOLESH
BREXBE=ALEXREKD. o #Ee R
ol ARERe] M —FHI .

L2 oholls EARECE sl Al

RAIFMABEAFTRE=ATA—THE
AMAKGET =B )BEAZE —EER
HEGEARE=S) S AT E- RS ERIRGE
EBEEDRIM AT ST & 8

BEAEATAAB—HHAEAEE HTRA=

=Rtz

FR=#_( TEMHAR=GE, TA+
SERFHEATIHZB _E=R—5H5RN
TATIZERTIEEHEE D _ERENUA
BT MRBR) CBRITHRBRE=RLERHN. o
AL BARKCZ 2x. x=2(mod 3),
x=3(mod 3), x=0(mod 7), 70-2.

+21-3=98 (mod 105)

tSde ul2 FEEe #E A

SE=MF_EZFH—ABFI=EZF_%
BERECAS—HUEERA-FERAS#E
ER=FH—TEL+AF-THE+=Hz—8+
ZR—EAREURAREES LR ELEE=KL
+BA.

N CHE— AR A BF =T
N A=Z=MHERAEOERREE(E)EBENAL
HREt+toWtEZzR AL+ =82
BATAREEZBESR—FLEBE-—-T=8
ATAOABEELAHARAT=RAR &
AL

AT=BEEN+—WAEZ BB —FTHUA
ME—TFTmEaH+—COABEENAERA S
AMANEZB_HMAREBRTASB_BNATH
EZBBE—FDNAEE—-T_8At0oAL
NANAERBAGTEEAURABENEEZ.

o7 ez sHAJe WHES ARAL=E
YEMIE x=1(mod 7), x=2(mod 8),
x=3(mod 9), 72-4=1(mod 7), 63 -
7=1(mod 8), 56:-5=1(mod 9), 72
4 +63-7-2+56+5+3 = 498 (mod 504)
olg},

Xfgt+—BBR=1+_"HR =+ =8 —K&
= —-FEtE—T-BR8E(H—
oA =R —EAR T AR TR 2B TS
EHREBLE=TAR T —K2hB—=N
+—8FH—-TFThLE=+ARH)+—F+=FL%
—EB+=@tT K2R+ —#+—EHERE
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B—THRBLTERT kBB —RU+=
BFE—TFT—FREEL+T=Z(H=2)+—+H%
—B=THT =R RLEEREBEA
BTHERT=ER2BR RO =8F—T
E=1WE.

o7] XkE HAJE BEE 4ERe=
Yehyd  x=3(mod 11), x2=2(mod
12), x=1(mod 13), 156:-6=1 (mod
11), 143-11=1(mod 12), 132-7=1
(mod 13), 156:6-3+4+143-11-2+4132

- 7=14 (mod 1716) o]t}

i B — ARG HBR= BT
RE—EBRTEEMERAEB=TREEC)
AEAMHR=Z=E—TAER 2SR 8FH
—F=a—+H@ZR) Z-EAEE—E=+MH
AEzB AR T B+~ E)=R
BN TR-EEZ BRSNS EHEE

BEAEE+HEEZ B —RUEEF—
TRREE+HGL=AELHRE+RAEZZEE
HeeEHABRRE _EA TR AEZBR—EL
HAEFE—TF_EA+.

7] XHE HANE HESE fdRRe=E
ez, x=1(mod 2), x=2(mod 5),
x=3(mod 7), x=4(mod 9), 315=1
(mod 2), 126=1(mod 5), 90-6=1
(mod 7), 70-4=1(mod 9), 315+126

+2+90-6-3+70-4-4=157 (mod 630
).

Bke] ABc =Rl HmTERI Je M
BELstol o217t A RIS o) da A#A Y
S EHAMEE e AL ¢ 5 e,
kol BEe) ARRY \MEH —HKI

3. & =&

HRFEE BBV AU 3 A
B ol MHERS BRASIW 2%
MR E &, KNtk AAA gEAH
o3 gtk 3 19 shpyl BRTFEROD B
Fo e Brx—ttik= #Estn ok
Flghol BT PERAS B/ BRTERA 4
Aol BE BT &3 RED ME=
SHAQAATN IS ol A= viep Zo)
o] E7t SHEMm, BHZHE £ BEIHER
EREERK &2 ooz ER 9y HAA
FIEE ez Hol BRFLIATS &R o
B g3AUd A Zoh ulA Euclid7lF BAX
< TEo] B Euclide] ol = E9XA
= ZE7} Eucid BHTel S0l EHEa 1
#EE3 L Ae A o) (4l o] RE
Halo 23 22 #7 Atk More rarely
known as the Formosa Theorem. Formosa
= BF BHEFEl U= Taiwan®] HEFo|
o}, @A TaiwanolW BEY MEe BE
HEHER 1 EUIE o] EAE g1 AN
9 A Z HRAM By BB E 45
EolA BHEAEC] FAMUTL Rol= H,
LA o] RIFE AT PEAL] AT
YA AL HFRY el E9. =iy
BREHEBS 471 A7) dojnd A
AERCIY REER B oAs RE
9} MRS E23| B3I BES BEF
AFEHREA 7HA BRI, JYel7iAe oA
< AWM= #M3x 29 =234 &L &
Qo fIs =9

—BERE—AR
AR=HEHSP
MI=AG—E
BEARRIME

o] £EHRDE FEI MEE —T—KB
MAREA T W,
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AT &
ARKPESA
EERMAME
ATEBES S
AR B
A —BisR
A A SE A AR I
WHAARES

o] LEANE XRIY MEc =x—X#
KRR Greece AHEE S WAk W
3 FEAES REBNolHdE Ax FEHAS
o] BwHEAES L3 4A FH HEACY
KREBY 5Tl EHAS Jebd Bhdo 3
7tA7 A= A 2

Mz - EEFm B8NS PEA974HE
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Al BE2 Yy
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