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Note on Calculation of Cnoidal Wave Parameters
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Abstract[JA new evaluation procedure for calculating the Jacobian elliptic parameter is presented.
This procedure is useful in calculating the trajectory for cnoidal wave generation. Upon specification
of water depth, the wave height and either the wave period or the wavelength, the presented algorithm
uses the Newton-Raphson method and the arithmetic and geometric-mean scales to calculate the
profile directly, without trial and error procedures or look-up in tables. It is shown that the algorithm
provides equally accurate result as the ad hoc methods previously used.
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1. INTRODUCTION

The evaluation of the parameters and of the tra-
jectory for the cnoidal wave generation in shallow
water is complex. The calculation of the surface
profile involves the solution of four implicit simul-
taneous equations. This difficulty has led most pre-
vious applications (e.g., Wiegel, 1960; Svendsen and
Hansen, - 1977; Goring, 1978; Fenton, 1979; Sobcy
et al., 1987) to either use trial and error type me-
thods or to find the parameters from tables.

When we want to generate a kind of shallow wa-
ter waves in numerical or in laboratory wave tank,
especially a train of cnoidal waves, it is important
to evaluate accurately the related parameters. In this
note we introduce a direct and elegant procedure
for evaluating the elliptic parameter using a New-
ton-Raphson method and we will show that the
results are correct to the same order of accuracy
as the previous methods.

2. GENERATION EQUATION

The specification of the horizontal velocity or the
displacement of a wavemeker as a function of time
is mathematically equivalent. For simplicity only re-
fers to the horizontal displacement. The relationship
between the free surface profile of generated long
waves and the horizontal velocity of wavemaker is
given by a trajectory equation derived from the co-
ntinuity equation, ie.,

g <§
dt h+{

=u€ = )
in which & is the displacement of wavemaker, u
the horizontal velocity component of wavemaker,
¢ the phase speed, & the undisturbed water depth
and ¢ the free surface displacement of long wave.
Employing 4 as the characteristic length scale
and \/h_/gﬁ as the characteristic time scale, we may
introduce the following dimensionless variables:
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The primes will be dropped for simplicity. Using
these dimensionless variables, the free surface pro-
file of cnoidal wave can be written in the following
dimensionless form (Goring, 1978; Liu and Cho,
1994):

{x =z—1+H cnz[ZK(%— LT) | m] 3)

in which L denotes the wa{felength, T the wave pe-~

riod, H the wave height and z, the height of trough
above the bottom. And cn is the Jacobian elliptic
function, K the complete elliptic integral of the first
kind and m the elliptic parameter. Substituting Eq.
(3) into the dimensionless form of Eq. (1), we obtain
the generation equation for cnoidal wave as:

& =c[1— L ] “4)

d
! z+H cnz[ ———L)|m]
L T

Eq. (4) is a first-order ordinary differential equation
and can be integrated numerically using a fourth-
order Runge-Kutta method (Synolakis, 1990; Liu
and Cho, 1994).

The relationships among cnoidal wave parameters
in dimensionless form can be written as (e.g. Mei,
1989):

=T k—Eyr1-H )
mK

HLzz%(’mK2 )
_ Hi, L E
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in which E represents the complete elliptic integral
of the second kind. It is noted that the expression
of (A4) in Goring (1978) corresponding to equation
(7) is not correct. There are several notational con-
ventions in use for the Jacobian elliptic parameter,
integrals and functions. We follow the notations
used by Abramowitz and Stegun (1972) throughout

the study. It is remarked here again that the free
surface profile of a train of cnoidal waves can be
determined once a water depth, a wave height and
either a wave period or a wavelength are given.

3. EVALUATION OF ELLIPTIC
PARAMETER

One of the difficulties in cnoidal wave problem
is to evaluate the Jacobian elliptic parameter m, el-
liptic integrals K and E and function cn. We present
an evaluation procedure for the Jacobian elliptic
parameter in this section and elliptic integrals and
elliptic function in the following section. Probably
the most important task is evaluating m accurately
because K E and cn are all functions of m. Since
in laboratory applications, the specification of the
wave period is more practical than specifying the
wavelength, the proposed algorithm calculates the
surface profile from the wave period, the undistur-
bed water depth and the wave height. Substituting
Eq. (7) into Eq. (6), we obtain an equation for the
wave period T given as

I 16m’K?
3H[m+H(2—m—3%>]

Because Eq. (8) is an implicit form for m, it should

®

be solved by either an iterative numerical scheme
or a trial and error type method. A trial and error
type method is a plausible choice (Goring, 1978;
Fenton, 1979). In this note we compute m with both
a trial and error method (hereinafter TE) and the
Newton-Raphson method (hereinafter NR). As poi-
nted out by Sobey et al (1987), m should be deter-
mined significantly accurate since the surface profile
of cnoidal wave is highly sensitive to m. The details
of TE can be found in Goring (1978) and will not
be repeated here.

We describe the evaluation procedure of m with
NR. We should know the first derivatives of K and
E with respect to m to use NR. The relationships
between the elliptic integrals and their derivatives
with respect to m are given as (Jahnke and Emde,
1943; Arfken, 1985):
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in which m’ is the complementary elliptic parame-
ter, i.e. m'=1—m. Eq. (8) can be rewritten as

E  16mK?
Y(m)=m+2H—mH—3H — —— 2
m)=m " K 3HT

(10)
Taking derivative of Y(m) with respect to m and
using Eq. (9), we obtain
dy 3H
— =1-H+——
dm 2mm'K?
16mK
3m’'HT?

(' K2+ E*—2m'KE)

(m'K+E). (1)

Then, we can compute m using Egs. (10) and (11)
with NR. The procedure for NR is much simpler
and more refined than that for TE. We also need
to evaluate K and E to compute m using either
TE or NR. The arithmetic and geometric mean sca-
les (hereinafter AGM), the most efficient and accu-
rate method (Goring, 1978), are used to compute
K and E. The details of AGM will be described
in the next section. If a wavelength is given instead
of a wave period, Eq. (6) can be used directly and
the basic principle remains the same. Computation
of other parameters is straightforward if m is given.

4. EVALUATION OF ELLIPTIC
INTEGRALS AND FUNCTION

4.1 Elliptic Integrals

We briefly describe two ways of evaluating the
clliptic integrals, K and E (Abramowitz and Stegun,
1972): (i) AGM, (ii) the infinite series expansion.
First, we can use AGM to evaluate the elliptic inte-
grals. The calculation of elliptic integrals using
AGM begins with a set of given numbers (@. b.
¢,). Then, we proceed to determine successive sets
of numbers: (a1, b1, ¢1). (@ b2 2o, (@u b ci) the
rough the arithmetic and geometric means. That
is,
step a, b,

ay= %(aod'_ bl)) bl = (au ‘ bu)]/2

1
2 02:?(a|+b|) bzz(al . b])I/Z

1 P
n an:_zn(an*l_‘_bn—'l) bu=(ay-1 * by-)"?

Co
i
Cl:?(ao_bo)
o,
o= 2(611 1)

1
CnZE(an*'l_bnfl)

The calculation stops at nth step where a,=b,, ie.
¢,=0. The values of a,, b, and ¢, are 1, \/n7 and
\/r7 respectively, to compute K and E. Finally, K
and E can be computed as

K(m)= 22

3 2"‘10(2]. (12)

k=0

, E(m)=K(m)[l—
It is found that ¢, is generally less than 107" with
n<8. To determine the incomplete elliptic integrals
we can start with @,'=1, b,'=v/m and c,,’:\/r?.
After the same procedure the incomplete elliptic in-
tegrals of the first and second kind, K’ and E', are
given as

K’(m):27n,, E'(m)ZK'(m)[l— kio 2"“(ck’)2]. (13)

Second, we can use the series expansion to com-
pute K and E. For the range of 0<m<|l, the comp-
lete elliptic integrals can be expressed as

n ner 1 @-ip,
K(m)—2+2 n:l[zz"*‘ (n—l)!n!]m (149
none 1 1 @-p,

Em=5"3 Zl 2n—1L2» (n—l)!n!]m

(15)

in which the upper bound of the series could be
truncated according to the degree of required accu-
racy. It is known that the series for K and E conve-
rge very slowly as m approaches to 1 (Arfken, 1985).
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More rapidly converging series for K and E as m
approaches to 1 are given in Jahnke and Emde
(1943) and Dwight (1961) as:

Km=A+ %{A— 1}m'+ 2{oc -~ %}(m’)2

o4
B e
+ %6 {A 3 (m'y+ (16)
1 N, 3 13),
E(m)=1 +?{A—?}m +E{/\—E}(m )y
15 61, ,
s fa= o+ (17)

in which A=In 4—In \/m’ and Egs. (16) and (17)
are valid only for m'<1. Wiegel (1960) used Egs.
(16) and (17) to calculate X and E when m approa-
ches to 1, but there is a typographical error in exp-
ression of K in Wiegel (1960). In general, AGM
can apply to any range of m, while a series expan-
sion can apply to a limited range of m.

4.2 Elliptic Function

Two procedures are also introduced to estimate
the Jacobian elliptic functioncn. First, the elliptic
function, cn (8), can be evaluated using AGM as:

1. Compute ¢,=2"a,0 in radians with a given 6.

2. Calculate successively ¢,-1, Op-2**,01, ¢, from
the recursive relation given as

1= %[d)k +sin” ]<(C1_ZSin¢k>]'

3. Finally evaluate cn (0)=coso,.
in which # is the same as that used in Eq. (12).
Goring (1978) also used AGM to evaluate of elliptic
integrals and function.

Second, the Jacobian elliptic function c¢n (8) can
also be calculated by using the series expansion.
Then, we need to know the incomplete elliptic inte-
gral of the first kind, K'. From Egs. (12) and (13)
the relationships between the complete integrals and
incomplete integrals are

K'=K(m'), E'=E(m'). (18)
Elliptic function c¢n (8lm) can be expressed in the
series expansion as

k+05

e i
cn(elm):\/lez lj_qy‘”pos':(lk%*l)i] (19)

k-0

in which g=exp(—nK'/K). Synolakis et al. (1988)
used Eq. (19) to study the run-up of cnoidal wave.
It is noted that since both AGM and the series
expansions for K and E include n implicitly or exp-
licitly, the use of accurate n is essential.

5. NUMERICAL RESULTS

We apply the procedure proposed in previous se-
ctions to calculation of cnoidal wave parameters.
Table 1 shows the elliptic parameters calculated
using both a trial and error method and the propo-
sed Newton-Raphson method. The calculated ellip-
tic parameters agree each other up to 15 significant
figures.

Fig. 1 shows the variation of elliptic integrals with
respect t0o m. Both K and E approach n/2 as m
goes 0. while K and E approach the infinity and
the unity, respectively, as m goes to 1. The Jacobian
elliptic integrals of the first kind for variable comp-
lementary elliptic parameters are plotted in Figs.
2 and 3, respectively. The series expansion (14) con-
verges very slowly (500 terms are used for the series),
while the series expansion (16) yields nearly same
result as AGM for m'<1 as shown in Fig. 2. Ho-
wever, in Fig. 3 the series expansion (15) produces
nearly same result as AGM, while the series expan-
sion (17) underestimates K for relatively larger m'.
In conclusion, the series expansions given in (14),
(15) and (16), (17) may not be used to compute
K and E for the entire range of m'. In Fig. 2 and
3, the results of series expansions ((16) and (15) co-
ncide with those of AGM, respectively. The cnoidal
wave profiles are shown in Fig. 4 with different
m ranging from 0 to 1-107"2 The profile is very
sensitive even for tiny change in m near to the
unity. The profile can be calculated by either the

Table 1. The calculated elliptic parameter m (H=0.1)

T trial and error proposed

200 0.9391229648398143 0.9391229648398142

400 0.9997826914777293 0.9997826914777293

60.0 0.9999993065683998 0.9999993065683997

80.0 0.9999999977847914 0.9999999977847913
100.0 0.9999999999929184 0.9999999999929183
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Fig. 1. The variation of Jacobian elliptic integrals of the
first and second kinds.
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Fig. 2. The variation of Jacobian elliptic integral of the
first kind.
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Fig. 3. The variation of Jacobian elliptic integral of the
second kind.

arithmetic and geometric mean scales or Eq. (19).
It is found that at least 120 terms, when Eq. (19}
is used, should be used to obtain the same accuracy
as the arithmetic and geometric mean scales for
m=1-10 "

In this study we present a simple but accurate

en’(6)

“0.0 0.2

4 o6
6/ K(m)

Fig. 4. The Jacobian elliptic function, cn®), profiles: I;
m=00, 2; m=05, 3; m=09, 4, m=1-10"2 5; m=
1-107% 6; m=1-10"% 7: m=1-10 "2

Table 2. Limiting values as m—0 and 1

limit K(m) E(m) z L cn(0)
m—>0 n/2 n/2 h-H 0 cos(8)
m—>1 © 1 h ) sech(0)

algorithm to calculate the Jacobian elliptic parame-
ter. The algorithm consists of the Newton-Raphson
method and the arithmetic and geometric mean
scales. The presented algorithm can be efficiently
and easily applied to calculation of a train of cnoi-
dal waves either in numerical analysis or in labora-
tory experiment.

APPENDIX

It is well known that crioidal wave has two limi-
ting cases: sinusoidal wave and solitary wave. In
this Appendix, We briefly show the limiting values
of parameters and the phase speed, and thus lim-
ting cases of cnoidal wave, too. From the series
equations K, E and cn have two limiting values
as m—>0 and 1, respectively, as listed in Table 2.

The phase speed of cnoidal wave (in dimensional
form) approaches asymptotically to the phase speed
of of sinusoidal and solitary waves as m goes 0
and 1, respectively. As m goes to 0, from Eq. (5)

= lim gh[1+m£(2~m—3%ﬂ

m—( h

=\/gh(1—%)
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=Vet[1-5(7 )]
:\/gh[l —%(kh)z]
:\/%tanhkh 20)

in which Eq. (4) has been used to replace m. As
m goes to 1

o

= }:11} gh[l +% (2—m—3%>:|

=\/gh<l +%) @1

Egs. (20) and (21) represent phase speeds of sinu-
soidal and solitary waves, respectively. The free sur-
face profile of cnoidal wave also approaches asym-
ptotically to the free surface profiles of sinusoidal
and solitary waves as m goes 0 and 1, respectively,
that is

{x, H= lim [z,—h+H cn{ﬂ((%—%)lm}]

m—0

st

T
= gcos[Zn(% - %)J (22)
{x H= }:E} [z,—h +H cn{ll((—i—— %) lm}]
=h—h +Hsech2[2K<%— %)}
=Hsech2[ i—g (x—ct)] 23)

in which K/L=+/3H/(16h*) and c¢=L/T have been
used. Eqgs. (22) and (23) denote surface profiles of

sinusoidal and solitary waves, respectively.
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