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Abstract

The present paper is devoted to constructing a numerical algorithm for solving un-
steady problems on generation, propagation and interaction of nonlinear waves at a
surface of ideal fluid, within the framework of the potential-flow model. The numerical
scheme is implicit. with non-linearity iteration at every step of time. the finite-differ-
ence method with boundary-fitted coordinates are presented in favor for validity and
high efficiency of the numerical mode] developed. Among these arguments, there are
the results of calculations of two test problems-on stretching of a liquid ellipse and on
wave generation by lifting a portion of a bottom.
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1. Introduction

The problem on unsteady motion of incom-
pressible, inviscid fluid with a free surface is
very complicated because of necessity to satisfy
the couple of nonlinear conditions on some
boundary parts unknown a priori (free bound-
aries). As a result, rigorous theoretical analysis
of the problem is very hard and numerical
methods are used intensively to calculate the
problem for a wide variety of particular initial
and boundary data. A review of these methods
can be found in Young [14] as well as in Fletcher
[4.5]. Most of the methods have various advan-
tages. But since every numerical method has
some disadvantages, new, more developed tech-
niques continue to appear.

In constructing a numerical algorithm most of
difficulties are associated either with treatment
of evolutionary equations (the kinematic and
dynamic conditions at a free surface) or calcu-
lating the potential field in the flow domain at a
fixed moment of time . To compute the evolu-
tionary equations, here the implicit Crank-
Nicholson scheme with non-linearity iteration is
applied. Such kind of scheme provides a high
reserve of stability, second-order accuracy and is
rather popular (Young [14], Haussling [7]. A-
saithambi [1]). The peculiarities of the present
application include a conservative form of the
kinematic and dynamic conditions and the opti-
mal co-location of grid nodes for different func-
tion involved in these conditions. No smoothing
procedure is used.

To calculate the potential field, i. e. to solve
the elliptic problem, the finite-difference
method, with boundary-fitted coordinates, is
chosen. This technique is described in detail by
Thompson et al. [11] and successfully applied by
many authors, in particular, by Haussling [7].
Asaithambi [1]. Daiguji & Shin [2], Young &
Vaidhyanathan [15] and so on. The finite-differ-
ence method is more simple to be realized and
usually leads to linear-equation systems of sim-
ple structure (with tri-diagonal matrices). con-
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trary to other alternative methods- the finite el-
ement and the boundary integral equation ones
{(see Young [14]). Some difficulties associated
with governing equations getting worse as a
consequence of variable exchange seem to be not
so principle and can be successfully overcome
what has been done here. The primary ideas in-
troduced are the reformulation of the elliptic
problem in terms of three unknown functions,
the most optimal co-location of grid nodes for d-
ifferent quantities to be found and the applica-
tion of the economic method of fractional steps.
As a result, the boundary conditions are imple-
mented exactly and the finite-difference scheme
becomes homogeneous: symmetric approxima-
tions are exploited only, no one-sided differences
are used to represent derivatives near domain
boundaries.

The high efficiency of the numerical algorithm
developed is confirmed by the results of test cal-
culations.

2. Problem formulation

Let the domain occupied by fluid be, at every
moment of time t, curvilinear rectangle QE={-,
< x <, -hxt)< y <n(x,t))bounded below by
uneven movable bottom y =-h(x.t). above-by
free surface y =n(x,t), from the left and fight
sides - by vertical boundaries x=I, and x=1,;,
penetrable in a general case. Here the right-
hand coordinate system is chosen with axis Ox
directed horizontally from left to right and axis
Oy pointes vertically upwards. Fluid motion is
assumed to be two-dimensional. Such restriction
has been accepted to save computer resources,
however, the mathematical formulation of prob~
lem and the method of its solution can be easily
generalized to treat the three-dimensional case.

Fluid is supposed to be homogeneous, incom-
pressible, inviscid. Its motion occurs under grav-
itation. Surface tension is not ‘taken into ac-
count as negligibly small in the problems to be
considered. The following factors are permissible
as the reasons of water motion(in any combina-
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tion): initial non-equlibriving condition of water,
action of water pressure, movement of a bottom,
given water flows through the side boundaries.
It is required to determine water motion, i. e. to
find free-sur-face configuration and distribution
of velocity and pressure in the flow domain.

In assumption of the absence of initial rota-
tion and with regard to the fluid properties and
to the set of forces taken into consideration, flu-
id motion is to be potential

U=U,V)=V0(x,y,t)=(D,,®,) (21

Here and henceforth, letter subscripts denote
partial differenttiation with respect to corre-
sponding variables.

Potential @ is known to be a harmonic func-
tion

®,+®,=0 in Q@ 2.2)

and to satisfy the second-type conditions on
the domian boundary

@, -n,®, =1, on y=n(x2), (2.3
®, -h®, =-h on y=-h(xt), (24)
o, =U,(y,t) on x=-l, (2.5)
P, =U;(5,1) on x=l, (2.6)

Equation (2.2) expresses the incompressibility
property of fluid, (2.3), (2.4), are the conditions
of its inability to pass through the surface and
bottom. In contrast, the left- and right-side
boundaries are considered to be penetrable, the
fluid flows through them are defined by rela-
tions (2.5), (2.6). Since function n(x.t)is un-
known a priori, condition (2.3) is not sufficient
and must be completed by another - the dynam-
ic one expressing the pressure continuity in
passing through the surface

P(x,n(x,t),t) = p(x,t) .7
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Here P(xt)is the given outer pressure, P(x,y,
t)is the pressure inside fluid, defined, as known,
by the Cauchy-Lagrange integral (an absolute
value of gravitational acceleration as well as flu-
id density have been equaled to unity)

P(x,y,t)=—-(®, + %(d)i +®2)+y) (2.8)

Equations (2.1)~(2.8) allow the fluid motion
to be determined (i. e. domain Q) and the ve-
locity-pressure field to be found) from some ini-
tial condition. This formulation is quite tradi-
tional but seems to be convenient rather for the-
oretical analysis, when it is desirable to make a
number of unknown functions as small as possi-
ble. But in order to construct an efficient nu-
merical scheme, some reductions of the formula-
tion should be done. To do so, we introduce the
following additional notations

d(x,t)=n+h, (2.9)
q(x,t)= [, @,dy, (2.10)
ux0)=[0,+ne,] @.11)
vix,t)=[-@, +n,@,] . (2.12)

Here d(x t)is the water depth, g(x.?) is the flu-
id flow through a vertical cross-section. Func-
tions u(xt) and v(xt) mean the tangential and
normal velocity components at a free surface
(with accuracy to a sign and normalizing multi-
plier).

Now we can write the governing equations as
follows

d,+q, =0, (2.13)
u,+8,=0, (2.14)
q=QMx, (2.15)

8(x,t)=n+p+

1 2 2
Trn? [2(u v )+n,uv] (2.16)
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’n:d—h, (217)
U=ht+qx' (2.18)

Equation (2.13) is obtained by integrating the
Laplace equation with respect to vertical coordi-
nate y and implementing boundary conditions
(2.3), (2.4). It expresses the mass conservation
law for an infinitely thin column of water. Being
equivalent to the kinematic condition (2.3), it
is, however, more preferable because makes it
possible to achieve exact conservation of mass
by applying some conservative numerical
scheme.

Equation (2.14), with function 3(xt) being de-
fined by (2.16), is the projection of the momen-
tum equation onto a free surface written in
terms of notations (2.11), (2.12) and with ac-
count of dynamic condition (2.7). Equation
(2.14) can be integrated with respect to x yield-
ing the Cauchy-Lagrange integral (relations
(2.7), (2.8)) explored usually. But such integra-
tion seems to be fruitless for constructing a nu-
merical algorithm because actually keeps space
differentiation. And as previously, due to diver-
gent type of the equation, it is sufficient to ap-
ply some conservative scheme to provide exact
conservation of momentum.

Relations (2.17), (2.18) are simple conse-
quences of (2.9) and (2.12), (2.3), (2.9),
(2.13), correspondingly. As far as water flow g is
concerned, it depends upon tangential velocity u
and free-surface elevation n. Unfortunately, this
dependence cannot be expressed explicitly and is
written in the form (2.15). with help of operator
Q(linear with respect to u), action of which will
be defined later.

As it can be seen, the problem on fluid motion
with a free surface is reduced to the typical
wave problem (see Whitham [12]): it is required
to find a couple of functions - water depth
d{xz,t)and tangential velocity component u(x. t),
evolution of which, from some initial conditions

d=d,(x) at £=0, (2.19)
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u=u,(x) at t=0, (2.20)

is governed by equations (2.13), (2.14) of
mass and momentum conservation, with addi-
tional relations (2.14)-(2.18), completing the
system. The problem, being one dimensional (all
quantities involved are functions of %, £ only, de-
pendence on ¥ is “hidden” in operator @(1)), is,
however, quite difficult because of nonlinearity
of (2.15), (2.16) (with respect to aggregate of d,
u and absence of an explicit expression for oper-
ator @(M) Action of this operator is defined by
relation (2.10). where ® (x,y.t) is the solution of
elliptic problem (2.2), (2.4)-(2.6), (2.11). Con-
dition (2.11) is helpful to be integrated along
boundary y=n(x,t) to yield

©=0 on y=mlxt) (221
where
o(x,8) = 9o (&) + [u(€,0)dE (2.22)

with arbitrary function ¢ ,(¢).

Thus, the problem on fluid motion with a free
surface is formulated with distinguishing the
evolutionary part (egs. (2.13)-(2.20)) and the
elliptic one (eqs. (2.2}, (2.4)-(2.6), (2.21)),
connected with each other by means of relations
(2.10), (2.22). Variable y is absent in the evolu-
tionary problem, similar, time ¢ takes part in the
elliptic one only as a parameter. Such decompo-
sition of the general problem on two correlated
subproblems, in every of which a number of in-
dependent variables is reduced on unity, seems
to be helpful for constructing a numerical algo-
rithm.

3. Numerical scheme for calculating the elliptic
problem

To develop a numerical scheme for solving the
elliptic problem(2.2) (2.4)-(2.6), (2.21), one
must not only take into consideration common
requirements to guarantee the solution of dis-
crete problem to converge to that of differential
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one, but also pay much attention to the efficien-
cy of algorithm because of necessity to solve the
problem many times repeatedly (at every time
step). Hence, there must be efficient enough the
procedure of constructing the coefficient matrix
for the linear-equation system(discrete analogy
of the problem) as well as the procedure of solv-
ing this system.

A finite-difference scheme for calculating an
elliptic problem similar to the present one can
be developed with one of three basic methods: of
finite differences(FD), of finite elements(FE)
and of boundary integral equations(BIE) (see
Yeung{14)). In “good” domains(with boundaries
coinciding with coordinate lines)the finite-differ-
ence method is thought to satisfy better the effi-
ciency requirements mentioned above, because
this method is more simple to be realized. How-
ever, in case when a boundary contains, like in
this problem, curvilinear and, moreover, mov-
able parts, it becomes problematic to satisfy the
conditions on this parts without noticeable de-
crease of method efficiency - accuracy and eco-
nomic feasibility. Accuracy of satisfaction of
boundary conditions can be improved by fitting
the computational grid to domain boundaries
(with help of suitable exchange of variables)
that usually results in decreasing the efficiency
of the FD method making it comparable with

the methods FE and BIE less dependent on flow

geometry.
- In this problem, however, it occurs possible to
adapt the computational grid without serious
consequences, i. e. without making more compli-
cated both the procedure of constructing coeffi-
cient matrices for linear-equation systems and
the procedure of solving these systems, due to
simplicity of a variable transformation and pos-
sibility to apply the economic methods of frac-
tional steps(Yanenko {13]), correspondingly.
This has predetermined the choice of the finite-
difference method to develop an algorithm for
calculating the problem.

Let’s consider variable exchange (x y) — (€
{). which is supposed to be not degenerate (J =
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detld(x, y)/9(E §)+0)and transforms flow domain
Q(¢) into rectangle m={&<E<& < <{<}(time
moment t will be fixed and within this Para-
graph time-dependence of all functions under
consideration will not be indicated). In terms of
new variables the Laplace equation takes the
form

(0D +pd) + B +¥PXx=0, in T, 3.1

where coefficients o, B,Y are defined as follows

&=z +y3)1d, (3.2)
B(&, L) = (o xe + e 3e) !, (3.3)
Y& = +y)/ d, (3.4)
JE,0) = xyp =2, ¥y (3.5)

The following quantity remains invariant
ay-pi=1 (3.6)

It seems useful to introduce notations

U(&,C)=a<l>§ +B(D§» V(§7§)=B¢§ +'FD§’ (37)
in terms of which(3. 1) takes the form of conti~
nuity equation

U +V,=0 . g (3.8)

and boundary conditions (2.4)-(2.6), (2.21)
are rewritten as follows

V=-xh, on {={, (3.9)
U=y, ‘on &=k, 3.10)
U=yU, on §=&; (3.11)
d=0¢ on {=Cp (3.12)

In perspective, the following dependencies, re-
sulting from (3.6), (3.7), will occur helpful
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@, =\U~BV, @, =aV-pU (3.13)

To calculate elliptic equation (3.1), the itera-
tive scheme with stabilizing correction is applied
(Douglas & Rachford [3], Yanenko [13]), which
belongs to economic methods of fractional steps.
In doing so, splitting is made with conserving
the divergent type of the equation

MV _ b P ol _ghua
® ¢ ¢ ®

=AUV (3.14)

Here the superscripts denote an iteration
number, @ is an iteration parameter, a sign of
which must be agreed with that of Jacobian :
/>0,

The system (3.14) may be completed with
help of

U = 0@ 1 poY, VA1 = pobt 1yoht (515

But in order to avoid some difficulties associ~
ated with approximation of mixed derivatives (i,
e. ®in the expression for U, D - for V)near the
domain boundaries, instead of (3.15) it is more
convenient to explore relations

Ulnllz = ((bgw-l/‘a’ +B£)/71 Vlm :(d)chl +Buk+1/2)/a (3 16)

based on (3.13). Finally, by adding the
boundary conditions to (3.14). (3.16). we put
the finite~difference scheme to its complete form

1 @2 _ QUEV? = ok +oVt (3.17)

k2 =(¢§+v2 +BVh) /y (3.18)

Utve =y U, on £=§, (3.19)

U2 on &=&.; (3.20)

= y§U2
2. k2 _chku/z = ok - cngk (3.21)
Yyl (q)é”l +ﬁU’”U2) /o (3.22)

VAL o ~xh, on (=, (3.23)
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olad =¢ on {={; (3.24)
C'Ck

o (I)‘-

) A

° ° “ v,

- ¢, E-¢,

(-5
Fig. 1 Grid system for the sliptic problem

For treatment of scheme (3.17)-(3.24) the
grid with nodes placed in “chess” order seems to
be the most suitable (see Fig. 1). This grid is
widely used for solving hydrodynamic problems
formulated in terms of “velocity-pressure” (here
the potential plays a role of pressure). Rectangle
T is covered by the grid with square cells of size
EX &, Nodes D;1p:10= P& vs, §n) & =Er+0 ) are
placed in the centers of these cells, nodes Uy,
Ui lie in the middle points of the left and
right *sides of cells and nodes Ve s, U ; are
disposed in the middle points of the upper and
lower sides cells (i=1,2, - M:; J=12, - Ny,
In accordance with the boundary conditions, n~
odes Uy, 0, Uy.pp are placed on side boundaries
E=& and £=& . nodes Vi o~ on bottom {={, |
nodes ®iy.5- on free surface {={q (this occurs
to be possible for arbitrary #, M, N due to the
proper choice of the rectangle size: Eto=Mz,
&Co=W-1/2)2). In doing so, nodes Vi turn
out to be located outside the flow domain and,
as usually in such cases, to find the fictive val-
ues of V, it is necessary to implement boundary
condition (3.24) as well as equation(3.21).

The chosen disposition of grid nodes makes it
possible to approximate derivatives by the sym-
metric differences only, values of functions be-
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tween their nodes are defined. if it is necessary,
by the half-sums, for example

W)y, j-v2 WUijye —Upyjy) /2
Ui_ve, j-v2” Uiy +U, 4 12)/ 2

5

Scheme realization is reduced to solving the
set of linear - equation systems with tri-diagonal
matrices. These systems are obtained by dis-
cretizing equation (3.17) (at the first half-step)
and substituting, instead of U, discrete analo-
gies of expression (3.18) or boundary values
(3.19), (3.20). At the second half-step the pro-
cedure is similar.

The scheme is developed for an arbitrary
variable exchange, in particular, an implicit de-
pendence (by means of differential equations) of
new variables on old ones may be used, which
allows the computational grid to be fitted to a
boundary (a free surface or a bottom), depen-
dent non-uniquely on the horizontal coordi~
nate(see Haussling{7], Thompson et al.[11], Ye-
ung [14], Yeung& Vaidhyanathan[15]). Here,
however, non-unique boundaries will not occur
in the problems considered below, so that their
solution may be obtained with use of simple al-
gebraic dependencies §=&(x.y), {={ (xy), mak-
ing the surface and bottom straight (shift and
stretching along axis are assumed to be absent,

i.e. &=, , &=0L)
E=x, {=CM-N+Eg(h=y)/d (3.25)

Relations (3.25) lead to the following expres-
sions for the coefficients, involved in equations
(3.18), (3.22) and boundary conditions (3.19),
93.20). (3.23)

=1 x2=0,
yg =((C"Co)n§ +(C“cK)h§)/(CK _C:O);

y=d((Cg — &),
a=y, B=-y, v=(1+p>/a (3.26)

In this case the Jacobian of variable transfor-
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mation is equal to y; and the condition of its be-
ing different from zero is equivalent to the natu-
ral condition of free-surface being not intersect-
ed with bottom: d+ 0.

4. Numerical algorithm for calculating
the evolutionary problem

Evolutionary equations (2.13), (2.14) are ap-
proximated with the Crank-Nicolson Scheme

dn+], k+1 - dn _%(q'ﬁ'l‘ k +q;’:) (4.1)

S S N —%(8;‘“’ F4d) (4.2)

Where T is a time step, the first superscript
denotes a time step number, the second one - an
iteration number. An iterative procedure is nec-
essary at every time step because of the scheme
implicity and the nonlinearity of dependencies of
functions q, 8, on quantities d, u to be found(re-
lations (2.15), (2.16)).

The Crank-Nicolson scheme is used exten-
sively for calculations of fluid motion with a free
surface (see Yeung [14], Asaithambi[l], Haus-
sling[7]. Scheme popularity may be explained by
the following its advantages: the second-order
accuracy for smooth solutions, absolute stability
and absence of dissipation in linear problems,
simplicity accuracy for smooth solutions, abso-
lute stability and absence of treatment.

Space discretization is based, like in the ellip-
tic problem, on the idea of disposition of grid n-
odes for different functions: nodes di.y, 81, M-
ve» Uiy, Biys, Piyjs are placed at points %, (=
1, 2, -+, M), nodes g;, &, lie at points x; (= 0, 1,
- M). Here x,is defined as -I,+v. . Values of
derivatives g,, 8, between nodes of functions ¢.8
are approximated by the symmetric differences.

Nonlinearity iteration in the evolutionary
problem is combined with iteration for solving
the elliptic problem, i. e. when dependence ¢*=@Q
(m)u* is being realized(the first superscript is
omitted) only one step of scheme (3.17)-(3.24)
is fulfilled. In other words, in the elliptic prob-
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lem the boundary value of potential as well as
the coefficients become dependent upon an iter-
ation number: in equations(3.17-(3.24), instead
of ¢, «, B, v there should be written ¢, o',
B, v*! with the latter being defined by (2.22),
(3.26) with use of «*™', ..

5. Test calculations of the liquid ellipse
problem

As a test, here has been considered the liquid
ellipse problem, a seldom example of a free-sur-
face problem having an exact solution in nonlin-
ear formulation (more precisely, solving the
problem is reduced to solving a single ordinary,
differential equation: Ovsyannikov[10]). This
solution describes such kind of fluid motion in
the absence of gravitation, when the flow do-
main boundary at every moment of time coin-
cides with ellipse (x/@)*+ (ay)?=1, where
a=o(t)is its horizontal half-axis. and the veloci-
ty field possesses potential ®(x, ¥, £) = (0/20)) (*~
¥%). which is harmonic and also satisfies the
kinematic and dynamic conditions(nonlinear) on
the boundary if only evolution of the ellipse
half-axis is governed by equation(point above
denotes differentiation with respect to )

aZ

d=c—2
V1+ot

with some initial value op=0(0} and constant,
defining the direction - along which axis, x(c)0) or
¥(e€0). - and the quickness of ellipse stretching in
time. The formulation of given problem can be
written in form of (2.13)-(2.20), (2.10), (2.2),
(2.4)-(2.6), (2.21), (2.22), if to take, as fluid do-
main Q(t), the piece of ellipse bounded at the left
and below by symmetry axes x=0 and y=0, at
the right - by vertical penetrable boundary x=1I
(Key), above - by a free surface. and in the
boundary and initial conditions to state

Alx,t)=0, plx, t)=-nx,b), 5.1)
L=0, b=, Ulyp)=0, Uylyp)=cd/a, :

M0 = 1=/, ugx) =, (14 1/ o (x / ag)

aa
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where o, =6(0)=coZ/\1+af .

According to the problem statement, gravita-
tion is absent that means member M in the
right-hand side of (2.16) should be omitted
(multiplied by the zero coefficient). However,
the absence of gravitation is possible to be simu-
lated without rewriting equation(2.16) but with
posing fictive surface pressure to neutralize
gravitation (N+p=0) what is expressed with
the second relations (5.1).

In calculations, there have been used values
=1, 0,=-1(¢¢= - 2), defining the initial con-
dition of fluid and the direction of ellipse
stretching - vertical, which is more interesting
in comparison with horizontal, because essential
stretching of the flow domain along y-axis in
combination with sufficient surface deformation
provides extreme conditions for testing the algo-
rithm. Value I=1/4 of domain length used here
makes it possible to calculate the problem up to
moment =7 2(computation time is limited by
the chosen value of I:0 < t <t. ,a(t) =0).

Comparison of calculated values with exact
ones({marked above by a wave) has been car-
ried out for three functions - d, u, ¢, i. e. the
following relative errors have been checked

v, @) =ld - dl/dl
Y, (&) =llu — Gl /il

v5 () =lig - gll/NIgil

where 11f(x,t)lishould be understood as
”f(x’t)”C; max,| f; ()= max;|f(x;,2)l

and functions d(x2), &(x#), §(x#), in accordance
with the written above exact expressions for the
domain boundary and potential ®(xy,t), have
forms

a?(x,t) =y1-(x/)? /o =T(x,t)

wixt) =01+ 1/0*)x/ )
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Gxt)=alx/oaW1-(x/a)? /o =alx/a)f

The results of calculation of the fluid surface
evolution are presented on Fig. 2, where the
surface shape is shown for time moments ¢=0,
1, 2(in order of numeration). The solid lines cor-
respond to the exact solution, the points —to the

t=3 Exact
n h\ sssCal

0.0 0.125 0.250

Fig.2 Free surface evolution in the liquid ellipse problem

0.020 .
r - - Theory
0.015
oA
0.010 T3
0.005 / !
0.000 /
0.0 0.5 1.0 15 2.0
t

Fig. 3 Relative erroes v;(¢), i=1,2,3
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0.8
|— Cal.
7 - - Theory 1:2/
0.6
oaf—— T — 4 ——1

/ ]
0.2
0.0

0.0 05 1.0 15 2.0
t

Fig. 4 Convergence rate y “(f)= 1,2

calculation with grid parameters M=10, N= 20,
T/ 2 1/2. To a scale of the Figure, the numerical
results actually coincide with the exact solution.
But difference yet exists and can be observed on
Fig. 3, where relative errors %{¢) (i=1.2.3) are
presented. The significant increase of functions
¥(#) may be explained by the essential deforma-
tion of flow domain: as it can be seen from Fig.
2, the liquid ellipse becomes almost 4 times
greater in vertical and, besides, the slope of tan-
gent to the surface at the right-side boundary
grows quickly(in an absolute value), achieving
the great enough value by time moment =2:
n.(,2)=-35.

In order to analyze the convergence of the so-
lution of finite~difference problem to the solu-
tion of differential one, there have been per-
formed the calculations with use of different
grids -with steps &= 2//(iM), where values of /,
M are mentioned above, j= 1, 2, 3. When the
grid step was varied, ratios M/N. T/, and o/
were kept constant. The computation results are
shown on Fig. 4, Where each curve with number
J(j= 1, 2) represents function ¥/, (¢) =v*',(t) fy
(), with ¥/, (t) being error ¥,() calculated with
grid step 2;. All over the time interval consid-
ered, the convergence of the numerical solution
to the exact one, i. e. the error reduction with
the grid step decrease, may be observed: v/;{1.
But the actual rate of convergence is lower than
the theoretical one(curves 1, 2 lie, correspond-
ingly, above levels 1/4 and 4/9 drawn by the
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dashed lines) and, besides, decreases in time
(the curves rise). The mentioned features of the
convergence rate behavior are most likely to be
also resulted from the strong deformation of
computational domain.

Thus, taking into account the conditions of
scheme testing, being extreme enough because
of the essential domain deformation, and the
use of relatively rough grids, the results of test
calculations should be estimated as quite satis-
factory.

6. Wave generation by lifting a bottom
portion(test calculation)

The problem on wave generation by lifting a
bottom portion dosen’t possess an exact ana-
lytical solution but has been investigated in
detail by means of experiment (Hammach [6])
and numerically (Nakayama [8]. [9]) as well.
Good agreement of the experimental and nu-
merical results mentioned indicates their reli-
ability and makes it possible to explore this
problem as a test. In addition, the problem
allows the constructed numerical algorithm to
be compared with another one(in the present
case, with the BIE method (Nakayama [8].
[9)) in efficiency.

The problem considered can be deduced
from general formulation (2.13)-(2.20),
(2.10), (2.2), (2.4)-(2.6), (2.21). (2.22) by
posing

h(x,t)={i“"°‘1‘e’“’“°“”'

3 - by

L=0,1,=1 U(y)=U,(y5t)=0

P =0, ny(x)=uy(x)=0

Similar to Nakayama [8]. [9]. the following
values of constants have been used: j = 36 :
b= 122 1 h, = 0.1 : a = 0.231.The problem
has calculated until time moment ¢ = 40 with
step T= 0.1 on mesh 32X4 what is in close

KEGEMBERE § 32 4 0 1 % 1995% 2R

correspondence to the disposition of boundary
elements in Nakayama [8].

The results of present computation, demon-
strated by the curves on Fig. 5(where. in de-
pendence on time, elevation of water surface
at fixed points, n(0, ¢) (a) and n(b, ¢t) (b), is
shown), agree quite well with the results of
similar calculation from Nakayama [8] (points
1) and experimental data of Hammach [6]
(points 2). As far as the computer resource
expanse is concerned, here it amounts to 5.4
sec per one time step for IBM PC 286 AT and
in Nakayama [8] - 2.7 sec for HITAC
8800/8700. with the latter being approxi-
mately two orders faster than IBM PC. The
given values count in favor of high economic
feasibility of the numerical method construct-
ed here.

7. Conclusion

1.0
*» Nakayama (Cal.)
n/hq = Hammach (Exp.)
— Present Cal.
0.5

——

o] 10 20 30 40
t
@) n(o,1)
1.0
= Nakayama (Cal.)
n/hy x  HKamwnach (Exp.)
— Present Cal.
0.5 ,'.....“A-
00l
0 10 20 30 40
t
() n(,t)

Fig. 5 Time history of wave elavations ar x=0 and b
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The numerical algorithm for calculating the
problem on unsteady motion of ideal fluid
with a free surface is developed. This method
possesses the following primary features :

1. The finite-difference scheme is implicit
that results in a high reserve of stability.

2. Application of symmetrical approximations
only (the symmetrical differences and the
half-sums) provides the second-order
scheme accuracy.

3. Due to fitting the computational grid to
the boundary of time-dependent domain
Q(¢), introducing the additional functions
Uand V to be found and disposing the
grid nodes in the most optimal way, the
boundary conditions in the elliptic prob-
lem are implemented exactly.

4. The scheme is conservative: there are ful-
filled exactly mass and momentum con-
servation laws.

5. The side effect caused by application of
the implicit scheme, namely the necessity
of iterative procedure at every time step,
is weakened by double use of this proce-
dure : simultaneously with iterating the
nonlinearity, the solution of the elliptic
problem is being constructed by means of
establishing the solution of the corre-
sponding parabolic problem.

6. The parabolic problem mentioned is calcu-
lated by the economic method of fractional
steps.

7. The algorithm is universal in sense of pos-
sibility to use variable exchange general
enough, in order to fit the computational
grid to the boundary of time-dependent
domain.

8. The algorithm efficiency may be improved
by applying some technical details as con-
structing the initial approach for the iter-
ative procedure by means of linear ex-
trapolation of solution from two previous
time steps. managing the iterative pa-
rameter in dependence on a divergence

Boris Ye. Protopopov
value, and so on.

Due to the numerical method features men-
tioned above, its high efficiency (accuracy x
economic feasibility) has been achieved what
has been proved by the results of test calcula-
tions.
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