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Application of a Potential-Based Panel Method for
Analysis of a Two-Dimensional Cavitating
Hydrofoils Advancing Beneath a Free Surface

Jae-Moon Lew* , Chang-Sup Lee* and Young-Gi Kim!

Abstract

A potential-based panel method is presented for the analysis of a partially or su-
percavitating two-dimensional hydrofoil at a finite submergence beneath a free surface,
treating without approximation the effects of the finite Froude number and the hydro-
static pressure.

Free surface sources and normal dipoles are distributed on the foil and cavity
surfaces, their strength being determined by satisfying the kinematic and dynamic
boundary conditions on the foil-cavity boundary. The cavity surface is determined
iteratively as a part of the solution.

Numerical results show that the wave profile is altered significantly due to the
presence of the cavity. The buoyancy effect due to the hydrostatic pressure, which
has usually been neglected in most of the cavitating flow analysis, is found playing an
important role, especially for the supercavitating hydrofoil; the gravity field increases
the cavity size in shallow submergence, but decreases when deeply submerged, while
the lift is reduced at all depth.

1 Introduction

Recently the need for a fast ship is increasing not only for the military purpose but also
for the transportation of passengers and modern commercial products.[1] Hull forms of
new concept are now under investigations, the hydrofoil being considered a useful means
producing lift in many cases. At high speed it is impossible to avoid the cavitation on and
around the hydrofoil, and hence we should be able to predict with a sufficient accuracy
such behavior of cavity as the inception, the extent and the shape, for the proper design of
hydrofoils.

Researches on the cavity around the body were initiated by Helmholtz in 1868 and
Kirchoff in 1869 by the hodograph method. Then in 1907 Levi-Civita extended the method
for the flow around the curved obstacle. The first engineering application of these works
was made possible half a century later by Tulin[2] for the analysis of the supercavitating
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flow, and followed by numerous investigations (see. for example, Tulin[2] for the review
of general papers related to the cavity flow).

Analysis on the cavitation in practice is carried out under various assumptions. The
fluid 1s assumed incompressible, inviscid and irrotational. The angle of attack, the cavity
thickness and the wave amplitude are assumed small to enable the linearization. The cavity
termination condition has to be suitably specified. The influence of the hydrostatic pressure
term in the cavitating free surface wave analysis has usually been neglected. Our aim is
to analyze the cavity flow past a hydrofoil, advancing with a finite Froude number, and at
the same time to show the importance of the buoyancy effect, that is, the gravity effect on
the submerged foil-cavity system, in the cavity analysis. We therefore review the existing
papers in three categories as follows:

o Literature where the buoyancy effect in unbounded fluid is neglected.
e Literature where the buoyancy effect in unbounded fluid is considered.
o Literature where the buoyancy effect in a free surface flow is neglected.

Linear theory for the first category was typically developed by Geurst[3] and Tulin[2]
under the assumption that the thickness of the body and the cavity is small compared to
the dimension of the body in the main stream direction. Nonlinear analysis was carried
out analytically by Wu[4] for the supercavitating flow of infinite cavity length. Numerical
analysis to solve the integral equation, formulated based on Green’s identity, was first
performed by Golden[5], using the discrete vortex/source distribution method for the two-
dimensional hydrofoil. This was extended t~ the supercavitating hydrofoil of the finite
span by Jiang[6] and further to the unsteady cavitating propeller by Lee[7], enabling the
prediction of cavity extent and volume variation. Analysis up to this point was based on the
linear theory. Nonlinear analysis considering the exact cavity and hydrofoil thickness was
done by Uhlman([8][9] for the two-dimensional hydrofoil in partially- and supercavitating
conditions by the method of vorticity distribution. A new nonlinear boundary element
method based on the potential formulation is recently reported by Lee[10],[11] Kim et
al{12} and Kinnas and Fine[13].

The effect of the transverse gravity field, that is, the buoyancy effect, upon the cavity
flow in unbounded fluid was first considered by Street[15][14]. He solved the linearized
supercavitating flow around a symmetric wedge section, including the hydrostatic pressure,
and found that the gravity effect produces the negative lift in the supercavitating flow.
Kiceniuk and Acosta[16] then verified the results experimentally. By applying the conformal
mapping technique, Larock and Street[17] developed a nonlinear theory and solved a mixed-
boundary-value-problem to find that the gravity effect reduces the lift and cavity size. In
their analysis they adopted the single spiral model, which permits the sudden velocity jump
at the cavity termination point (see Tulin[2] for description of the termination modelings).

The cavity flow beneath a free surface has been dealt with many authors. In early
sixties, linear theories were developed treating single flat-plate hvdrofoil with a finite cavity
near the free surface (see, for example, Yim[18]), and Green and Street[19] subsequently
treated by the linear theory two supercavitating hydrofoils of finite cavity length at infinite



Jae-Moon Lew, Chang-Sup Lee and Young-Gi Kim 85

Froude number. Larock and Street[20] also analyzed the supercavitating flow past a two-
dimenstional flat plate by using Riemann-Hilbert mapping technique. They treated the
finite cavity length problem and adopted the double-spiral cavity termination model. For
the hydrofoil of arbitrary section, Furuya[21] applied the nonlinear theory and solved the
problem in an iterative manner. It should be noted that the works up to this point are all
carried out for the infinite Froude number flow, neglecting the buoyancy effect. Applying
Green’s theorem, Doctors[22] recently introduced the method of the free surface source
distribution on the body and cavity surfaces for the hydrofoil advancing at a finite Froude
number. Although he could satisfy the linearized free surface condition, the radiation
condition and the infinite depth bottom boundary condition by using the Kelvin sources, he
suffered from a numerical difficulties in his velocity-based formulation, and had to resort
to the least square fitting method to remove the highly oscillating behavior of the source
strength along the cavity surface. He also neglected the buoyancy effect, while dealing with
the finite Froude number problem.

In the present study, we treat the partially- or supercavitating flow past a two-dimensional
hydrofoil advancing under a free surface with a finite Froude number. We applied Green’s
identity to derive the integral equation for the unknown velocity potential on the foil and
cavity surfaces. By introducing the free surface dipoles and sources, we satisfy the lin-
earized free surface condition and the radiation condition at the outset. We include the
hydrostatic pressure term in evaluating the dynamic condition on the cavity surface and
show the significance of this buoyancy effect.

2 Statement of the Boundary Value Problem

Let’s consider a two-dimensional cavitating hydrofoil placed in an inviscid, incompressible
and irrotational fluid. A Cartesian coordinate system is chosen as shown in Figure 1, with
the z-axis placed on the undisturbed free surface, Sr, and with the positive y-axis pointing
the opposite of the gravitational acceleration. The hydrofoil of the chordlength c is inclined
by an angle of attack o relative to the uniform oncoming free stream in the positive z-
direction. The leading edge of the foil is located at z = 0 and below the undisturbed free
surface at y = —d, d being the submergence.

The total velocity, V, may be expressed in terms of the total velocity potential, ®, which
is defined using the oncoming velocity, U, the position vector, z, and the perturbation
potential, ¢, as follows:

V=V (H

where
d=U_ c+0¢ (2)

Conservation of the mass applied to the potential flow gives the Laplace equation valid
in the fluid region as a governing equation:

Vi =0 (3)



86 Analysis of a 2-D Cavitating Hydrofoils Advancing Beneath a Free Surface

We assume that the amplitude of the free surface, (,,, or the disturbance is small so that
the boundary condition on the free surface may be linearized. Motion of the fluid can be
uniquely defined by imposing the boundary conditions on the boundary surfaces as follows:

1. Linearized free surface condition on the free surface Sg:
¢, +vd, =0 4)

where Uy, = |U,| and v = g/U2,. The free surface elevation on the free surface S
may be expressed as

Cw=—""—"0 &)
2. Radiation condition at infinity upstream and downstream:

lim |V®|=|Uy|, and lim [V®|<oo (6)

3. Flow tangency condition on the body surface Sg:

od
n-V=—=0 @)
on
where 7 is the unit vector normal to the boundary, defined positive when pointing
into the fluid region.

4. Quiescence condition at infinite depth:

lim V& - U, 3)

y——o00
5. Kutta condition at the trailing edge:
Vorp| <o 9)
where T.E. stands for the trailing edge.

For the partially cavitating flow, the Kutta condition requires that the magnitude of the
velocity be finite at the trailing edge as in the subcavitating flow. The same condition may,
however, be implemented in a different way for the supercavitating case, since the trailing
edge is the junction point of the two distinct flow regions. The Kutta condition may be
restated that the flow across the trailing edge be smooth and continuous. See Lee et al[11]
and Wu[4][23] for additional description of the requirement at the junction point, that is,
the detachment condition at either the leading or the trailing edges.

With the presence of cavity around the hydrofoil, we have to apply the kinematic and
dynamic boundary conditions on the cavity surface, the cavity closure condition at the
cavity trailing end and the cavity detachment condition.
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6. Kinematic condition on the cavity surface Sc¢:

DF "
= 10
Dt 0 (19)

where F(z,y) is a function expressing the cavity surface.
7. Dynamic condition on the cavity surface Sc:

P=Dy (11)

where p, is the vapor pressure inside the cavity.
8. Cavity closure condition at the cavity trailing end:
Tc(l'cte) =0 (12)

where T°(x) denotes the cavity thickness function and z .. denotes the x-coordinate
of the cavity trailing end.

9. Detachment condition at the trailing edge of the foil in supercavitating flow is the
continuity of the velocity vectors at the trailing edge:

AEI%.IE. Va= BEI%E. Ve (13)

where A and B are points positioned on the lower part of the hydrofoil and cavity
surfaces connected at the trailing edge, respectively.

Using the Bernoulli equation, we get relations between the surface pressure, p, the
tangential speed on the foil-cavity surface, |V,|, the cavitation number, o, and the pressure
coefficient, C,, as follows:

1. Case when the buoyancy effect is not included:

P % L
c, =2 v (;120 =1- (|—[—j‘::|)2 ,  on foil/cavity surface (14)
— Doo — Do ‘L'

)2 =1, on the cavity surface (15)

=_C, ==
%pUzo Pv ( Uoo
where p is the density of water, p., is the ambient pressure at the depth of the leading

edge upstream infinity, that is, poo = Patm + £9d, Parm being the atmospheric pressure,
and |V | is the tangential speed on the cavity surface.

2. Case when the buoyancy effect is included:

P — Dx ‘K| : z(y—yref)/c
A R

Ml

(16)

= gy = (e 2 bl

l: 72 , on the cavity surface (17)
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where ¢ the chordlength, y. and y,. the y-coordinates of the cavity surface and the
leading edge, respectively, and F, = U, /,/yC the Froude number of the oncoming
flow.

In this paper, we are interested in the lift, L, the drag, D, and the moment, M, acting
on the hydrofoil in cavitating condition and also the cavity volume, Vol (or, the cavity
section area in the present two-dimensional problem).

The nondimensional coefficients of these quantities are defined following the expression
of Uhlman[8].

The lift coefficient, C;, is given as

L ~ Uy
CLE%'OUQC:—' SBCpf.L’YOO S (18)
the drag coefficient, Cp, is
D U
CE_—:—}{CA.-_—-O"d 19
Y X s P UL (19)

and the moment coefficient, Cs, about the leading edge of the hydrofoil is

Mk __ Cpr x iuds (20)

Cuk
M $pU2 c? Sp

Hl

where ¢ denotes the chordlength and r denotes a vector from the leading edge to a point

on the foil surface; £ is the unit tangential vector defined in the clockwise direction along

the foil surface as shown in Figure 1, and k is the unit vector normal to the = — y plane.
The cavity volume, Vol, is calculated from the cavity thickness function, 7¢(z), as

ZCGU
Vol = / T%(z) dz Q1)
0

where £, is the cavity length defined along the z-axis as shown in Figure 1. For super-
cavitating flow, T°(z) becomes the vertical extent of the upper and lower cavity surfaces.

3 Singularity Distribution Method

To treat the cavitating flow under a free surface, we may derive an expression for the
potential in the flow field by distributing the free surface dipoles and sources on the body
surface.

The total potential in the fluid region may now be expressed as follows:

u(§) o

®(z) = U + —G(z:{)dS
SpUSe 2T Ong =
w O
o [ Boggiss [ 22 ameas 22)
Sc 2T = Se 27T Ong =
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where

q(§) = free-surface source strength
u(§) = free-surface normal dipole strength

z(z,y) = field point where the induced potentials are calculated, (z + 7y)

—ik(z—€")
G(z;€) = In(z—-§+In(z-¢ +2][—-k—~—dk — 2mie&¢)
0
normal derivative with respect to the point §
4
£(&,m) = point where the singularity is located, (£ + i7)
'(§&,m) = complex conjugate of ¢, (£ — in)

and also Sg, S¢ and S, denote the body surface, the cavity surface and the wake sheet
surface, respectively, and pu, denotes the dipole strength on the wake sheet surface, S,
which is negative of the jump of potentials across the wake sheet surface. The direction of
the dipole in the wake sheet surface, S,,, is defined positive when pointing upward.
For dipole only distribution, we may convert the flow tangency condition (7), 9®/9n =
0, in the fluid side of the boundary into the zero total potential condition, for the fictitious
internal flow,
& (z) =0 (23)

where the superscript denotes that the velocity potential is to be calculated on the interior
to the foil surface.

Equation (22) may now be reformed and applied to a point on and inside the foil-cavity
surface to meet the alternative form of the kinematic boundary condition (23) as

n(§) o

_ ] (z) ][
(i) =0=Uy el
(z) T 2 + SpUSc o 8n§

Gl(z; §_) ds

q
+ /SC P dS+/ = 8n5 £6)dS  (24)

In case of partially cavitating flow, 1, is the negative of the potential jump at the trailing
edge, whereas, in fully cavitating flow, ., is that at the cavity trailing end.

From the dynamic boundary condition and equations (16) and (17). the hydrostatic
;| with the Froude number and the cavity
thickness. If we express the speed on the cavity as a product of the reference speed
[V}[Cle and a correction factor function dependent upon the streamwise position «(s), that
is, |Vi] = a(s)|Vi|ae, the strength of the dipole on the cavity surface may be expressed as:

-

- - . 3
pE) = (7€) = @ (O = (8% + [Vl |, als)ds)

£
= fete — [Vlete /1 als)ds (25)

where @ and p.;. denote the total potential and the dipole strength at the cavity leading

edge, respectively. Equation (25) gives a very useful relation between the tangential speed
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on the cavity leading edge |17t|de and the the dipole strength /1(5 ) on the cavity surface.
If we neglect the influence of the hydrostatic pressure, (25) degenerates into a simple
linear relation since a(s) = 1. On the other case of the varying hydrostatic pressure, the
correction factor a(s), which is dependent upon the unknown cavity surface location, should
be computed iteratively. The iteration procedure is however very stable and fast since the
correction function is close to 1 and only depends on the small variation of the transverse
extent of the cavity surface.

The source strength representing the thickness of the cavity or, more correctly, the
function to relocate the current cavity surface position in an iterative process may be related,
in a linearized sense, to the product of the oncoming velocity and the first derivative of
cavity thickness correction function, ¢, as in the case of thin wing theory,

dt”

g=Vo=Us—m (26)

t°= T(Ci) - T‘:szu (27)

where V,, is the normal component of the total velocity on the cavity surface, which is
expected to be nonzero when the tangency boundary condition (7) is replaced by the zero
total potential condition (23), and the subscript (i) denotes the iteration index. Equation
(27) shows that t° is the difference of the cavitv surfaces between two successive iterations.
Note that the source strength, ¢(£), vanishes upon convergence.

Since the cavity thickness, T¢, is to satisfy the closure condition (12), the thickness
correction function, ¢¢, should also satisfy the same condition. Integrating (26), we get
expressions for the cavity thickness correction and an alternative form of the cavity closure

condition as follows:
!
(1) = / A gy (28)
Jo
lt‘(ll/
() = / - (29)
0 U

Once the equation (24) is solved, the cavity source strengths, ¢({), are known, and hence
the new cavity shape may be obtained by correcting the ordinate of the cavity surface at
the current iteration, as schematically shown in Figure 2.

4 Numerical Calculations and Discussions

4.1 Non-cavitating free surface flow

The present paper is the outgrowth of Lee et al[11]. who applied the present method to the
cavitating flow past a hydrofoil advancing in an unbounded fluid. The numerical procedure
are described in detail and evaluated in Lee et al[11] for the case of the unbounded fluid.

The first step in validating the present numerical procedure is, therefore, to analyze
the flow past a hydrofoil advancing beneath a free surface in non-cavitating condition.

We selected a 12% thick Joukowski section, for which a numerical result by Bai[24]
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and experimental data are available. Figure 3 shows the pressure distribution around this
Joukowski hydrofoil under the condition of a = 5 deg, F, = 0.617, and the leading edge
submergence d/c = 0.113, together with the comparison with existing data. It is shown that

the result correlates well at least with existing numerical methods for the fluid of infinite
depth.

4.2 Supercavitating flow

To show the effect of the transverse gravity field upon the cavitating flow, we selected
a symmetric wedge placed horizontally in uniform flow. Figure 4 shows the computed
(negative) lift, L, non-dimensionalized with the displaced weight of the wedge, B, versus
the cavity length relations for the wedge with apex angles, § = 1 deg and § = 7.5 deg,
together with the linear theoretical result of Street[15] and experiments of Kiceniuk and
Acosta[16]. It is first of all observed that the magnitude of the negative lift, that is, the loss
of the lift, increases with the increase of the cavity length. It is shown that, for the small
apex angle, 3 = 1 deg, the computed result (— - —) falls on the theoretical line of Street
(—) up to the cavity length, .., /c = 2.0. The two results deviate from each other, from
{.qv/c = 2.0 and above, showing the evidence of the blockage effect upon the lift force of
the long buoyant cavity.

Kiceniuk and Acosta[16] carried out experiments with a symmetric 3 = 7.5 deg wedge
for three Froude numbers, F. = 5.0, 6.2 and 7.5, and their results are reproduced in Figure 4.
Our computational results for the same condition are also added in Figure 4, showing little
dependency upon Froude number variation. It is noted that the experimental results scatter
considerably, which indicates the unsteadiness of the high speed flow condition, while
showing the similar trend as the present computation. Figure 5 shows the results for the
apex angle, 3 = 15 deg, for the same Froude numbers. Deviation between the experiments
and the numerical computation increases, which indicates that the wall blockage effect
appears more significant with the increase of the apex angle and the transverse thickness
of the cavity.

Another computation is made for the flow past a flat plate deeply submerged beneath a
free surface, but unlike the existing results such as Lee et al[11], including in the present
study the hydrostatic pressure variation due to the gravity in the vertical direction. Figure 6
show the cavity shapes, predicted by considering or without considering the buoyancy effect,
for the assumed cavity length, ¢.,,/c = 4.4. For the same cases with pre-assigned cavity
length, the computed lift, drag coefficients and the computed cavitation number, o, and the
cavity volume are compared in Table 1. It may be noted that, for this deeply submerged
case, the lift and the cavity size are reduced slightly, although not significant, due to the
transverse gravity field variation around the foil and cavity boundary as predicted by Larock
and Street[17].

Up to now, the influence of the free surface boundary in contact with the atmosphere is
not considered, that is, the effect of the free wave upon the flow around the hydrofoil has
been neglected. To the authors’ knowledge, there is no published evidence dealing with
the transverse gravity effect upon the cavity flow past a hydrofoil advancing at a finite
Froude number near a free surface, and hence only the results of the present method will
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Table 1: Comparison of the lift, drag coefficients, the cavitation number and cavity volume
coeflicients, predicted with and without considering the buoyancy effect, for a prescribed
cavity length, £, /c = 4.4. NP = 190.

Without With

buoyancy effect | buoyancy effect
CL 0.324 0.307
Cp 0.057 0.054
o 0.190 0.174
Vol 1.240 1.203

be presented. Figure 7 shows that, for the similar condition as Figure 6 except the finite
submergence depth, d/c = 0.53, the cavity shape and wave profile are altered significantly.
When the hydrostatic pressure term is considered into computation, the position of the cavity
upper surface near the leading edge is lowered compared to the surface obtained without
considering the gravity effect, but the cavity turns slightly upwards downstream due to the
buoyancy effect. Remember that the pressure constant dynamic boundary condition on the
cavity surface is equivalent to requiring the velocity being constant when neglecting the
buoyancy effect, but on the contrary with the buoyancy effect, the tangential speed on the
cavity surface is no longer constant. The tangential speed on the upper surface is less than
the speed on the lower surface due to the difference in the hydrostatic pressure. Moreover,
the effect is more significant on the upper cavity surface than on the lower surface. It is
expected, therefore, that the wave pattern will be influenced to the same degree and should
be analyzed with the buoyancy effect into consideration.

We, then, carried out a parametric study to see the influence of the submergence depth
and Froude number. Figure 8 shows the cavity volume, the cavity length, and the lift
and drag coefficients variations as a function of the cavitation number for three depth
conditions, that is, d/c = 0.5,1.0 and 2.0, for a flat-plate hydrofoil at « = 10 deg and
F. = 3.0. Figure 9 also shows the similar quantities for the same hydrofoil at a = 10 deg
and the submergence depth, d/c = 1.0, for three Froude numbers, that is, F, = 3.0,4.0
and 5.0. In both figures, the results obtained with or without considering the hydrostatic
pressure term in computations are compared. It is noted that the buoyancy effect, due to the
depth difference between the upper and lower cavity surfaces, appears most significantly in
the cavity volume and the cavity length. At the same cavitation number, by including the
buoyancy effect, the cavity volume and the cavity length are reduced when the submerged
depth is large, roughly when d/c > 1.0, in a similar manner as we observed for the deeply
submerged hydrofoil, whereas the trend is reversed for the case of shallow submergence.
The lift and drag coefficients decrease at most of the submerged depths when the buoyancy
effect is considered.

From Figure 9, we may observe that the buoyancy effect decreases with increase of
Froude number, as expected from (16) and (17). The buoyancy etfect appears most pro-
nounced at lower Froude numbers when the hydrofoil advances at shallow draft, when
d/c = 1.0, contrary to the negligible influence for the cavity flow in deeply submerged
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Table 2: Buoyancy effect upon the lift and drag coefficients and the cavity length and
volume coefficients for a supercavitating hydrofoil at & = 10 deg and d/c = 1.0 for two
Froude numbers, F,. = 2.0 and 3.0. Comparison with the non-cavitating case is given.

Without With Non-
buoyancy | buoyancy | cavitating
effect effect condition

Cy 0.296 0.292 0.665
F.=20 | Cp 0.052 0.051 0.107
o =0.148 | .4y /c | 3.042 2.570 N/A
Vol 0.563 0.467 N/A
Cr 0.313 0.303 0.725
F.=30 | Cp 0.055 0.053 0.115
0 =0.142 | lea/c | 3.081 3.042 N/A
Vol 0.694 0.677 N/A

condition.

The most noticeable consequence of including the hydrostatic pressure in the compu-
tation may be evidenced from Figure 10, which shows the change of the wave elevation
for different cavitating conditions. A flat-plate hydrofoil is operating at o = 10 deg and
d/c = 1.0 for two Froude numbers, F, = 2.0 and 3.0. Added together in the figure is the
wave elevation generated by a symmetric hydrofoil with 1 % thick biconvex foil section.
It may be seen that the wave elevation decreases in general with inclusion of the buoyancy
effect, presumably due to the cushioning effect of the constant pressure cavity.

The lift and drag coefficients and the cavity length and volume coefficients obtained
for the corresponding cases to Figure 10 are summarized in Table 2. We observe that the
buoyancy effect is the same as we have seen in the parametric study. Table 2 also shows
that due to the buoyancy effect the lift and the cavity volume reduced by 1.4 ~ 3% and
about 20%, respectively, for both Froude number cases.

4.3 Partially-cavitating flow

A computation is made for a partially-cavitating hydrofoil with an NACA 16-006 section
advancing at Froude number, F, = 0.5, with & = 5.0 deg beneath a free surface at
d/c = 0.6. Figure 11 shows the cavity shape and the wave profile for the assumed cavity
extent of £, /c = 0.5, together with the wave pattern generated when the cavity is absent. It
is observed that the wave amplitude increases considerably compared to the non-cavitating
case, due to the additional thickness effect of the cavity. It is also seen that-the cavity
and wave profiles, with and without considering the buoyancy effect, are indistinguishable
in the partially cavitating case. This is due to the small cavity size and also duc to the
relatively large Froude number compared to the supercavitating case.
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5 Conclusions

A potential-based boundary element method is presented for the analysis of a super- or
partially-cavitating two-dimensional hydrofoil advancing at a finite submergence beneath a
free surface, treating without approximation the effects of the finite Froude number and the
hydrostatic pressure.

e Numerical results show that the wave profile is altered significantly due to the pres-
ence of the cavity. The buoyancy effect due to the hydrostatic pressure, which has
usually been neglected in most of the cavitating flow analysis, is found playing an
important role, especially for the supercavitating hydrofoil.

o At shallow submergence, the cavity length beyond the super-cavitating foil gets longer
due to the gravitation effect, which becomes less influential with the increase of the
submergence. At shallower submergence, both the lift and drag increase.

e With the increase of the submergence depth and the Froude, the influence of the
hydrostatic pressure decreases.

e The hydrostatic pressure effect is negligible for the case of the partially cavitating
flow.

The present potential-based boundary element method, developed for the two-dimensional
case, may be extended for the analysis of the three-dimensional lifting hydrofoil by replacing
the free surface Green function without any difficulty.
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Figure 1: Coordinate system and definition
sketch of a cavitating hydrofoil.
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Figure 2: Definition sketch of the cavity sur-
face position at each iteration.
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Figure 3: Pressure distribution on a 12%
thick Joukowski hydrofoil at « = 5 deg,
F, = 0.617, and the leading edge submer-
gence d/c = 0.113. Fluid depth, H, is infi-
nite. Data taken from Bai[24].

B8=75°
Exp. [15] Present
F. =50 ) ®
F, =62 . X
F.=75 o *
— Linear, Street{14], 5 — 0°
- = Present, § = 1.0°
0
i oo
-1
%@ o
L/B—2 TR
§ o NS
3 o ooO &)
-1 d °°: [ ]
—4 T T T T T T T

0 1 2 3 4 )

leav/c
Figure 4: Ratio of the buoyancy induced lift
to the displaced weight of the wedge versus
the cavity length for 3 = 7.5 deg. Compar-
ison with the linear theory of Street[14] and
experiments of Kiceniuk and Acosta[16].
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to the displaced weight of the wedge versus
the cavity length for 3 = 15 deg. x/c

Figure 7: Effect of the transverse grav-
ity field upon the cavity shape(above) and
wave profile(below) past a supercavitating
flat-plate hydrofoil at & = 10 deg, F. = 4.0

and d/c¢ = 0.53; Predicted with( ) and

0.5 77— without(— — —) the hydrostatic pressure term.
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Figure 6: Effect of the transverse gravity
field upon the cavity shape on a supercav-
itating flat-plate hydrofoil at « = 10 deg,
F. = 4.0 and d/c = oc; Predicted with(—
—) and without(— — —) the hydrostatic pres-
sure.
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Figure 8: Effect of the transverse grav-
ity field upon the cavity volume, the cav-
ity length, the lift coefficient and the drag
coefficient for a supercavitating hydrofoil at
a = 10 deg, F. = 3.0, for three submergence
depths, d/c = 0.5(x), 1.0(¢) and 2.0(o); Pre-
dicted with( ) and without(— — —) the
buoyancy effect.
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Figure 9: Effect of the transverse grav-
ity field upon the cavity volume, the cav-
ity length, the lift coefficient and the drag
coefficient for a supercavitating hydrofoil at
a = 10 deg, d/c = 1.0, for three Froude
numbers, F 3.0(%),4.0(¢) and 5.0(0);
Predicted with( ) and without(— — —) the
buoyancy effect.
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Figure 10: Buoyancy effect upon the cavity
and wave profiles past a supercavitating flat-
plate hydrofoil at « = 10 deg, d/c = 1.0
for two Froude numbers, F, = 2.0(upper)
and 3.0(lower); Predicted with(——) and
without(— — —) the buoyancy effect. Non-
cavitating case(----) is added for comparison.
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Figure 11: Effect of the transverse gravity
field upon the cavity shape and the wave
profile past a partially cavitating hydrofoil
with NACA 16-006 section at d/c = 0.6,
a = 5 deg and F, = 0.5, for a cavity length,
£.av/c¢ = 0.5. The cavity and wave profiles
predicted with( ) and without(— — —) the
hydrostatic pressure term are not distinguish-
able. Non-cavitating case (- - - - - ) is added
for comparison. N2 = 200.




