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A Nonlinear Calculation of 2-Dimensional Hydrofoill with
Shallow Submergence

Seung-Joon Lee !

Abstract

For treating a hydrofoil moving with nonzero angle of attack, first, Tulin’s theory{1]
is extended, and some computational results are given. Then a newly developed source-
vortex panel code, which employs a nonlinear free surface boundary condition proposed
by Lee[2] and satisfies the Kutta condition, is explained, and its results are compared
with the existing experimental data and other numerical results. Overall performance
of the developed code is shown as satisfactory.

1 Introduction

Using a panel method(Douglas-Neumann type) to predict surface elevations resulting from
a moving submerged hydrofoil, Van & Lee[3] compared various free surface boundary
conditions(FSBC), and later Lee[2] proposed a nonlinear FSBC, which can be easily im-
plemented in the numerical code. He showed that his FSBC gave better agreement than
the commonly used Poisson or Dawson FSBC with the experimental measurements of
Salvesen[4], however, there was still non-negligible difference between the computational
prediction and the experimental data. A part of this difference was regarded as a result of
not satisfying the Kutta condition at the trailing edge(TE) of the hydrofoil. In deriving his
FSBC, Lee made use of the theory of Tulin[1], which is an exact theory(in the framework
of potential theory) for predicting surface elevations due to moving submerged body. For
obtaining computational results, Lee approximated Tulin’s theory to the second order in a
sense, and he restricted himself to those bodies, which have a longitudinal symmetric axis
parallel to the incoming flow, and thus of which the angle of attack(AOA) is zero.

In this study, first, Tulin’s theory is extended to include nonzero AOA cases, and some
computational results are shown. Then to solve the flow field around a moving submerged
hydrofoil with nonzero AOA we developed a source-vortex panel method, in which Lee’s
FSBC is implemented, and now the Kutta condition is satisfied. Numerical results are
compared with the existing experimental data and other computational findings.
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2  Tulin’s Theory - Extended to Nonzero AOA Cases

Tulin[1] proposed an exact theory of gravity wave generation by moving bodies, and its
approximation, and part of his results can be summarized as follows.

For a submerged body in the incoming uniform flow of speed U, if we let G = (22)% =
¢*e™%% = 1+ H, where ® = ¢ + 1% is the complex velocity potential corresponding to the
unit velocity, ¢ the modulus of the complex velocity, and 6 its argument, then H is given

as
H(o) = ie~l / Qu(d)eKo—@gg, (1)
where

(] R .
= [ Qués, @)

and K = F,”% = gL/U%g is the gravitational acceleration, L the body length, F, the
Froude number). Here, Q); represents the effect of the body and is given by

(1 (’05395)
d¢ g

where the subscript s stands for the surrogate body. If we let ®, the complex velocity
potential for the flow field around the surrogate body, and %2+ = g,e=*:, ¢, and 6, can be
obtained as a function of @ by,

Qi(9) = — on i = 0, (3)
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where 6, is the angle between the z-axis and the tangent of the upper surface of the

hydrofoil in the physical z-plane(see figure 1). Once H(¢) is attained, we get the surface

elevation by the transformation

_ dp e’ _
z_/(—ITH—)%_/7d¢, on ¥ =0. (5)

In developing his theory, Tulin[1] neglected the circulatory motion around the body, and
so did Lee[2]. However, as pointed out by Salvesen[5], for a foil-shaped body moving with
high F, the major part of the ‘body-correction’ comes from the effect of the circulatory
motion, and truly it cannot be neglected for nonzero AOA cases. Although equations above
were derived for the non-circulatory problem, it is believed that they are equally valid for the
circulatory ones, since what has discontinuity or multi-valuedness is the velocity potential,
not the velocity itself.

Now, for a hydrofoil moving in the infinite fluid domain, its lift can be said to consist of
two parts. One is due to the camber, and the other due to the AOA. If we restrict ourselves
to the symmetric foil only, we need not consider the camber effect. But for a hydrofoil
moving under the free surface, in addition to the effect of AOA, that of the free surface must
be included. For instance, a symmetric foil moving under the free surface with zero AOA
experiences a lift, while the same foil in the infinite fluid does not. According to Kochin[6],
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a moving submerged dipole of strength y is acted upon lift ¥, whose dimensionless form.
Yy = Y/(pu?/87h?) can be expressed as a function of F, = U/\/gh alone(see figure 2),
where p is the fluid density, and % the submerged depth. It is worthwhile to note that Y; is
positive for Fj, < 0.84. We also note that this lift does not result from the Kutta condition,
rather from the FSBC. However, Kochin obtained zero lift for a submerged flat plate with
zero AOA due to his method of approximation, in which the Kochin function is used and
for getting it the complex velocity on the body surface is replaced by that of the same
body located in an infinite fluid. Of course, there is nonzero lift acting on the submerged
symmetric hydrofoil with zero AOA, but for the thin hydrofoil it may be ignored as a first
approximation.

To take the effect of AOA into account within the framework of Tulin’s approach,
first, we note that the treatment of Tulin explained above considers the ‘thickness’ problem
only. We recall that the flow field around a symmetric thin hydrofoil with nonzero AOA
in an infinite fluid is given by the sum of the source and the vortex distribution being the
solution of the ‘thickness’ and the ‘lifting’ problem, respectively(see Newman([7]). Hence
to satisfy the Kutta condition for the nonzero AOA case we need to add the ‘vortex’
distribution somehow to the original Tulin’s solution. Since the complex velocity potential
®,(z) corresponding to the lifting problem for a thin hydrofoil may be expressed as follows,

B(z) = 2 Olw/lggln[z— (6 — ihde. 6)

where « is the AOA. And since as a first approximation we can regard ® ~ z, the complex
velocity w; as a function of ® can then be given as

_a 1 1-0 dcfb o
u’l(d))_ i Jo QE) ¢~(Q;~Zh)’ OHU“O~ (7)

Using the first order solution for the lifting problem, while the second order one for the
thickness problem, we can regard the present method as inconsistent second order accurate,
and may expect the accuracy of the present method deteriorated compared to the non-
circulatory cases. Regarding the complex velocity we obtain from (4) as w;, the new g
and 6,, now including the effect of nonzero AOA, can be approximated by

qs = |lwy +wy|, s = —Arg(w, + wy). (8)

To take care of the singular behavior of the integrand for w; near the lower end point of
the integration interval, we transform the integration variable using 2(¢ — 1) = sin §, then
the integration can be easily carried out numerically, for instance, by the Simpson’s rule.

To perform the example calculation, now we need only to specify 4, in (4), and we
used the same function as before in Lee[2], that is

6, = —46(0 — %), 9)

where ¢ can be understood as the maximum thickness of the body at ¢ = % In figure

3, taking F, = 0.4,6 = 0.2,h = 1.0, we compare @,;(¢) when o« = 0°,1°.3°, and we
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can clearly observe the trend of the increase in the magnitude of Q; as « gets larger. In
figure 4 we show the surface elevations for the same cases. and we confirm that the bigger
Q; results in the greater elevations. As « increases the free surface in front of the foil
is lowered probably due to the circulatory motion around the foil. Although the method
explained above cannot show what changes are made if we satisfy the Kutta condition for
the zero AOA case, it is certainly effective in showing the mechanism of surface wave
generation for nonzero AOA cases. All the wave-generating activity is represented by @),

which affects both the magnitude and the phase of the resulting wave system as shown up
in (1).

3 Influence of Nonzero AOQA on Surface Elevations &
Pressure Distributions

In the previous work of Lee[2], various foil-shaped bodies of zero AOA were taken for
example calculations, but the Kutta condition at the TE was not satisfied. This fact may
have caused the difference between the numerical predictions and the experimental data.
In order to describe the circulatory motion around the submerged body more properly, we
developed a source-vortex panel code(a variation of Martensen-Dirichlet type) and used it
instead of the source panel code(Douglas-Neumann type) adopted in the previous works.
In coding for the treatment of the vortex panels the way described by Lewis[8] was most
helpful. A few characteristics of the code are; a) On the body surface vortex panels are
distributed, while on the undisturbed free surface source panels are distributed. b)Back
diagonal correction for the vortex panels on the body is done to ensure that net circulation
around the profile interior vanish. c¢)Wilkinson type Kutta condition is applied so that
the strength of the vorticity distribution is the same for the two panels connected to TE,
and the equation for the lower TE panel is deleted after it is subtracted from that for the
upper one to make the linear system closed. d)Although the vorticity strength is assumed
constant over a panel, and the panel shape rectilinear, the coupling coefficients(or influence
coefficients) for the self-panel are corrected to take the effect of the change in the slope of
the profile into account, which was first proposed by Lewis. e)ln discretizing the FSBC,
the 4-point upwind differencing used by Dawson[9] 1s adopted. And the mirror image of
the body, having the vorticity strength of the equal magnitude but with the opposite sign
to that of the body itself is also introduced to make the y-component velocity induced by
the combination of the body and its image vanish on the line y = 0. Here, the velocity is
non-dimensionalized by U, and the length by L.

The FSBC proposed by Lee[2] can be written as

(T4 20)u, + (20,0 =0, cug=10 (10)

where the subscript stands for the partial differentiation. and « = (u, vj.u = (u, &) are
the velocity vectors for the sought solution and the Poisson solution, respectively. Thus, @
satisfies the Poisson FSBC

Uy + he=0. ony=0. (11)
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Lewis[8] proposed a cambered Joukowski foil with smooth turning tangent at the TE,
and we show in figure 5 the computational results for the Joukowski foil when a = 0°, h =
1.0, F,, = 0.4. Here h is measured from the line y = 0 to the center-chord point. The
pressure coefficient Cy,(= p/(pU?/2)), p being the pressure, for this case is compared
with that of the foil in the infinite fluid for zero AOA and the unit speed. The value of
Cr = Y/(pU?L/2), the lift coefficient, for the submerged foil is 0.983, while that for the
foil in the infinite fluid is 0.886. This shows that there is a range of parameters F,, and 4,
for which C; increases due to the free surface effect.

For the Salvesen’s foil, we compare the previous result, which was obtained without
satisfying the Kutta condition, with the present one in figure 6, when F,, = 0.422,6 =
0.343,h = 0.9174, o = 0°, where ¢ is the maximum thickness. Although the foil, shown
in figure 7 with other foils used in this study, is rather thick, the difference between two
results are not notably big, which asserts our claim in the previous section. There is
still some difference in surface elevations between the present result and the experimental
data obtained by Salvesen[4]. Maybe the flow is highly nonlinear, and the second order
correction accounted by the present method is not big enough for this particular case.

Though there are not many experimental measurements of the surface elevations gen-
erated by a hydrofoil with shallow submergence, Duncan[10] is one of such works. He
towed a foil of the NACA 0012 section in a flume, and later Coleman[11] tried to simulate
numerically the experimented cases with the finite difference code he developed. Duncan
reported his measurements for various submerged depths, A = 1.286,1.162,1.034, 0.951,
while AOA and F;,, were kept constant, namely, « = 5° F,, = 0.567. In figure 8, we
compare our results with Duncan’s and Coleman’s. As the submerged depth decreases,
waveheights numerically obtained by the present method become larger, but not quite as
much as those experimentally measured. Coleman’s numerical values are greater than the
experimental data, but our results smaller. Part of the difference may be due to effects of
the bottom of the flume, which was taken into account in Coleman’s calculation.

Parkin, Perry and Wu[12] is also one of the few experimental works on the pressure
distribution on a hydrofoil, and they used the Joukowski symmetric foil with 12 % thickness.
Their experimental cases also include a set, in which a and F), are fixed, but h varied.
Namely, o = 5°, F,, = 0.95, while » = 1.80,1.0,0.707 (their & is defined as the distance
from y = 0 to TE of the foil). We show in figure 9, the C, curves predicted by the present
method, compared with the experimental data. It is clear that for most cases agreement
between two results is acceptable. But for some other cases of very shallow submergence,
not shown here, there are still non-negligible differences between the improved numerical
results and the experimental data. As Parkin et al. reported, wave breaking just behind the
hydrofoil affected the flow field around the foil. But they did not make it clear in which
cases of their measurements wave breaking occurred, so that it is hard to tell how the wave
breaking alters the pressure distribution on the hydrofoil at this stage.

4 Conclusions

First, we showed a way to extend Tulin’s theory[1] to include the effect of angle of attack
in generating surface waves by moving submerged foil-shaped bodies. The extended theory
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hinted us that how the circulatory motion around a foil affects the flow field and the
surface waves. Then was introduced a newly developed source-vortex panel code, in which
source panels are distributed on the undisturbed free surface, and vortex panels on the
body surface. In coding, a nonlinear FSBC proposed by Lee[2] was also implemented, and
the Kutta condition of the Wilkinson type was satisfied. Numerical results given by the
code were compared with the experimental results of Salvesen[4], Duncan[10] and Parkin
et al.[12], and with the numerical results of Coleman|[11]. The agreement between the
numerical and the experimental results are in general acceptable. But for future works it
seems we need more experimental data of the surface waves and the pressure distribution on
a hydrofoil measured for the same setting, so that we can clarity how the wave phenomena
on the free surface affects the pressure distribution on the body surface.
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Figure 6. Free surface elevations and Cp
distributions for the Salvesen’s hydrofoil where
Fp = 0.422,h = 0.9174,0 = 0°. For a) & b)
Kutta condition is not satisfied, but for c) & d) it
is.

Figure 7. Geometry ‘of various foils, where
S=Salvesen’s foil, C=cambered Joukowski foil,
N=foil of NACA 0012 section, J=symmetric
Joukowski foil(12% thick).
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Figure 9. (', distributions on the symmet-
ric Joukowski hydrofoil of 12% thickness where
Fn = 095, « = 5° for various h. Parkin et al.'s
experimental data(e) are shown together.



