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Hydrodynamic Coefficients of an Oscillating
Cylinder in Steady Horizontal Translation on the
Free Surface
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Abstract

An integral equation associated with a mixed distribution of source and normal dou-
blet on the wetted surface of a two dimensional body has been presented for calculating
the hydrodynamic coefficients of an oscillating cylinder in steady horizontal translation
on the free surface. This equation contains two dimensional equivalent of the line inte-
gral for a three dimensional surface-piercing body. It also contains an integral relation
which eliminate the occurrence of irrelevant solution. The resulting overdetermined
linear system is solved by the method of Householder. Hydrodynamic coefficients of
a half immersed circular cylinder have been calculated for various Froude numbers up
to 0.35 . The present numerical results for a very small Froude number agree well
with those for zero Froude number. It seems that the present method yields reasonable
numerical results for all frequencies without restriction on the magnitude of Froude
number in the context of linear wave theory.

1 Introduction

The radiation problem for an oscillating body advancing on or below the free surface
with a constant horizontal velocity has been studied by several researchers. Brard derived
a Green function associated with a three dimensional pulsating Kelvin source advancing
under the free surface[1]. Haskind derived a Green function in two dimensions[2]. The two
dimensional hydrodynamic coefficients of a fully submerged cylinder have been calculated
by making use of an integral equation whose unknown represents the density of source or
of doublet distributed over the wetted surface[3][4][5].As for a surface-piercing body, no
systematic comparative study on existing numerical methods based on a rigorous two or
three dimensional formulation has yet been carried out[6][7][8][9].

In this paper, an integral equation with nonsymmetric kernel is derived from the method
of source and doublet distribution on the wetted surface of a two dimensional surface-
piercing body. Discretization of the equation yields an overdetermined linear system which
can be solved numerically by Householder’s method. Hyvdrodynamic coefficients of a half
immersed circular cylinder have been calculated for various Froude numbers up to 0.35 .
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2 Formulation of the Problem

The fluid is assumed to occupy a space V' bounded by the wetted surface S of a surface-
piercing body at its mean position and by the free surface I’ of deep water under gravity.
The body performs simple harmonic oscillations of small amplitude with circular frequency
w about its mean position which is moving with a steady horizontal velocity u. Cartesian
coordinates(z, y) attached to the mean position of the body, are employed with the origin
o in the waterplane W of the body at its mean position and the y axis vertically upwards.
The waterplane lies in the plane zoz and the plane xoy is perpendicular to the generatrices
of the cylindrical body in order that the problem may be treated in two dimensions. With
the usual assumptions of an incompressible fluid and irrotational flow without capillarity,
the fluid velocity is given by the gradient of a velocity potential. The boundary condition
is linearized assuming that both the magnitude of unsteady flow and the magnitude of
steady flow due respectively to the oscillation and steady translation of the cylinder are
small enough to neglect their products. Since the problem is linear, the potential can be
decomposed into a steady potential due to the steady translation of the body and a unsteady
potential ®(z, y, t). The governing equations for ®(x, y, t) are given as follows[4]:
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where a;(j = 1,2, 3) denote respectively surge, heave and pitch motions, O, the center of
rotation of the body, n the normal vector directed into the fluid region V' from S and ¢ the
gravitational acceleration. The potential must also satisfy the radiation condition at infinity.
Introducing complex amplitude defined as follows,

a; = Re{(a; + ia;*)e'i“’t} 4

and considering the body boundary condition (2), it can be found that @ takes the following
form:
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where
o;=¢;+igiT, J=1.2,3 (6)
where ¢;(j = 1, 2, 3) denote complex valued elementary potentials. Taking into account of
(2) and (5), the following body boundary conditions for ¢, can be found:

T:é'j-ﬁ on S for j=1,2 (7
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Other boundary conditions for ¢; are identical to those for ¢.

3 Integral Equation

The explicit form of the Green function in the complex plane » = z + 4y has already been
introduced in the reference[3]. Its final expression is as follows:
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where v = w - u/g denotes the Brard number, E; the complex exponential integral and ¢,
the modified complex exponential integral[4]. Applying Green’s theorem to an elementary

potential and the Green function in the fluid region V, the following integral relation can
be found:
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Applying Stokes’ theorem to the second integral in (12) and assuming that

/ Q@;Gdg ~0 (13)
w Oz

the integral reduces to a simple expression as follows:
@CCJC' — (DDGD (14)

In (13), the subscript 11~ denotes the waterplane and in (14), subscripts C' and L) denote
respectively left and right intersecting points of the free surfgce F and the body sgrface S
as shown in Figure 1. In case of a three dimensional floating l?ody, Fhe expression (14)
shall be replaced by the following line integral around the waterline W'L:

/) oGdz (15)
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-Simple application of Stokes’ theorem to the third integral in (12) yields the following

expression:
oG oG 0o 13J0)
(#5),~ (o5), - |(e52) - (o52), ao

Substitution of (14) and (16) into (12) yields
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Here, in order to alleviate the manipulation to construct an integral equation without mod-
ifying the nature of the problem, it is assumed that the free surface and the wetted surface
intersect at a right angle. Then, following the convention used in the singularity distribution
method, the formula (17) becomes
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where

h=—6 on S (19)

7= s (20)

The equation (19) assumes that the mixed distribution of 4 and ¢ on S generates a null
scalar field outside the fluid region V. However, the solution of (18) may not satisfy the
assumptions given by (13) and (19). In order to prevent the occurrence of an irrelevant
solution, the following condition should be added to (18):

/(UG paG>dl:0 on W @
s 0

or

/S uGodl = — /5 0Gdl on W 22)

The above integral relation signifies that the potential induced by the source and doublet
distribution over S vanishes on W, the portion of the free surface inside the body. Since ¢ =
0 on W , 1ts derivatives also vanish on 1™ and so does the integral of (13). It also assures
that the potential in the domain bounded by S and W is identically null. It is very useful
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characteristic of a mixed surface distribution of sources and normal doublets to be able to
impose a null scalar field outside the domain under consideration. Simultaneous resolution
of (18) and (22) can be carried out by the method of Householder after discretization. The
pressure on S can then be obtained by making use of the Bernoulli equation:
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p=-p (671‘ - Ué}) 23)

The hydrodynamic pressure forces and moment due to the unsteady potential can be
obtained as

Fié + By = — /S piidS on S (24)

Fydy = —/S p (OlLM x ﬁ) dS, MeS (25)

In (25), L denotes the characteristic length of the body. Introduction of non-dimensional
added-mass and wave-damping coefficients M;; and D;; into (24) and (25) leads to the
following expression for F; :

3
F, = —ng Z[MUG“J -+ wDijdj], 1=1,2,3 (26)

i=1

4 Numerical Results and Discussion

The hydrodynamic coefficients of a circular cylinder half immersed as shown in Figure 2
are computed for various Froude numbers, F,, = u/+/gR. They are all plotted as functions

of wy/R/g. Here, it should be noted that w is actually the circular frequency of encounter
given by the following formula :

W= w (141 w,/g) @7)

where w, denotes the circular frequency of incident waves whose direction of propagation
is opposed to that of the steady translation of the body. So, the expression (27) holds in
case of head sea. In case of following sea, the relation between w and w, is given as
follows :

w=w, (1l —uw,/g) (28)

In this paper, w is considered as that of the head sea. The contour of semicircle is discretized
in eighty line segment of equal length and C'D in forty. In figures 3 through 6, the
well-known added mass and wave-damping coefficients due to surge and heave motions
of the present numerical model with zero Froude number are presented by solid lines.
The hydrodynamic coefficients calculated by the present method for three nonzero Froude
numbers are shown by other lines. It is shown that the present results for a very small Froude
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number of 0.005 agree well with those for zero Froude number. It is also shown that the
present numerical results are almost speed independent at low Froude numbers up to 0.1 for
the present numerical model. It should be noted that the computed values of hydrodynamic
coefficients fluctuate slightly as the Froude number grows. It is a numerical problem
caused by the discretization of the integral equation. The fluctuation will be diminished by
increasing the size of linear system. In figures 7 through 10, the hydrodynamic coefficients
for five Froude numbers from 0.15 to 0.35 are presented. The coefficient My, is still
shown to be almost speed independent. Other coefficients are significantly reduced from
F, =0.15to F, = 0.35 for w < w, where w. = 7. g/u. v, = 0.25 is the critical Brard
number where the Green function fails to exist as shown in (11). It is interesting to note
that My, , Dy; and D,, take their local minima at about w = w,. For w > w,, D;; and
D,, show significant increase from F,, = 0.15 to F,, = 0.35 and their peak values become
clear as the Froude number grows while M), is slightly increased. It should be noted that
the local minima of D;; and Dy, of the present numerical model become negative in the
neighborhood of w, for F,, > 3.0 . It probably is due, in part, to the local resonance at
w. as explained in the reference [4]. The nonlinear effect might have another part in this
problem. Since it is physically impossible for the damping coefficient to be negative, the
present method for the present numerical model might be invalid for F, > 3.0.

5 Conclusions

An improved integral equation is presented to solve the radiation problem for a floating body
advancing on the free surface. From the solution of the integral equation, the hydrodynamic
coefficients of an oscillating cylinder in steady horizontal translation on the free surface
can be found for all frequencies. In principle, there is no restriction on the magnitude of
Froude number under the assumption of linearization. But the upper bound of F;, should be
taken where the computed wave-damping coefficient becomes negative. It might be closely
related to the wave making characteristic of the cylinder. The present numerical results are
open to experimental results as well as to other numerical results for comparison.
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Figure 1: Coordinate systems

Figure 2: Numerical model
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Figure 3: Surge induced surge added-mass coefficients
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Figure 4: Heave induced heave added-mass coefficients




10

Hydrodynamic Coefficients of an Oscillating Cylinder - - -

2.0 e Tt
3
Fn=0.000
""" Fn=0.005
- T Fn=0.010 1
15 e Fa=0.100 B

0.5

0.0 b—rmu
0.0

Figure 5: Surge induced surge wave-damping coefficients
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Figure 6: Heave induced heave wave-damping coefficients
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Figure 8: Heave induced heave added-mass coefficients
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Figure 10: Heave induced heave wave-damping coefficients



