Abstract
In this paper, we propose a range image segmentation algorithm using robust regression. We derive a least $\kappa$th-order square (LKS) method by generalizing the least median of squares (LMedS) method and compare it with the conventional robust regressions. The LKS is robuster against outliers than the LMedS and shows performance similar to the residual consensus (RESC). The RESC uses the predetermined number of sorted residuals, whereas the LKS uses an adaptive parameter determined by given observations rather than the a priori knowledge. Computer simulation with synthetic and real range images shows that the proposed LKS algorithm gives better performance than the conventional ones.