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Abstract

In this paper the projective controls, previously derived to preserve the dynamic modes of a
state-feedback reference system, are extended to allow the preservation of the modes of a
general output-feedback reference system. In general, the extension allows projective controls
to be used as a controller approximation technique, where a reduced-order controller is
designed to approximate the closed-loop behavior of the higher-order reference controller.
This extension is useful if the best available reference control for the system is an
output-feedback control. An example shows that the increased design freedom of proposed
design method allows the stabilization of a given plant using a lower-order controller than the

projective controls with state-feedback reference.

[. Introduction

The projective controls method provides a
systematic procedure for designing static and
low-order dynamic output-feedback controllers

for linear time-invariant multivariable sys-
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(14 The projective controls approach

tems.
involves the approximation of a reference
control system. The reference control law may
be determined by standard multi-input/multi-
output(MIMO) feedback

and should meet all the control system speci-

synthesis methods,
fications, but may be difficult or impossible to
implement.

The objective of the projective control is to
match the reference control when the plant

state vector lies in a chosen invariant sub-
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space of the reference system. This subspace
then becomes an invariant subspace of the
projective control system as well. For initial
conditions in this preserved invariant sub-
space, and in the absence of disturbances, the
trajectories of the projective system and the
reference system will be identical. For a static
projective controller, the dimension of the
invariant subspace preserved(i.e.. the number
of reference eigenvalues and eigenvectors
retained by the projective control system) is
measurements
feedback. For a

projective controller, the dimension of the

equal to the number of

available for dynamic
preserved invariant subspace is increased by
the order of the controller.

The projective controls approach is a sys—
tematic design methodology. where the order
of the dynamic controller is gradually in-
creased, until enough reference modes are
retained and enough design freedom is
available that the design is able to satisfty the
control requirements. The order of satisfactory
projective controllers are often much lower
than can be achieved by reduction of full or-
der controllers. (See, for example, 41 ) The
approach has also been generalized to apply

(5" A recent practical

application of projective controls appears in te1

to discrete-time systems.

The projective controls method has always
assumed the use of a state-feedback reference
system. In some cases, this may present a
limitation of the approach. A state-feedback
control does not account for the plant output
structure or for any measurement distur—
bances or uncertainties. An output-feedback
control, on the other hand, may account for
the output structure and measurement
disturbances, thereby guaranteeing optimum
performance and robustness. Such properties
may be essential to the final control system

implementation, but are usually achieved by

ERiER

other
Therefore, it

introducing an observer or some

high-order control structure.
may be advantageous to design a low-order
projective control system to approximate the
behavior of a high-order output-feedback
reference system.

This paper develops an extension of the
projective controls approach to allow the use
of a general output-feedback reference. The
derivation is parallel and the results are
quite similar to those for projective controls
with a state-feedback reference. The extension
allows the projective controls approach to be
interpreted as a controller reduction tech-
nique. The low-order projective controller is
closed-loop

designed to approximate the

behavior of the higher-order reference
controller. Since the projective controller
preserves the dynamic properties of the
closed-loop reference system, the approxi-

mation method directly accounts for the
interaction between the controller and the
plant. The extension also allows increased
freedom in the selection of the reference
modes to be retained by the reduced-order
closed-loop system. By use of this additional
freedom, the projective controls may stabilize
a given system with a lower-order controller
than could be found using a state-feedback
reference. An example problem is given to

show the advantage of the new approach.

IT. Projective Controls with Output-
feedback Reference

Given a linear time-invariant system
described by

£ = Ax + Bu (2.1a)

y = Cx, (2.1b)

where xR u«=R™ and y<R", consider
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the Jth-order strictly proper reference
controller

J‘C(» = Are/x( + Bye}fy , (228)
U = Crpx. , (2.2b)
where x. € R Then the reference
closed~loop system is
)é A BCW/ x
| - [ (2.3)
Xe B,efc Ayef X
Defining
A BC,ef i
F= , (2.4)
Brefc Aref

the invariant subspaces of the system (2.3)
are described by

FX=XA, (2.5)

where X is the matrix of generalized
eigenvectors and A is a block-diagonal matrix
of eigenvalues in Jordan form. In case of
complex-conjugate eigenvalues, it is con-
venient to use a 2X2 real block in A, and a
corresponding pair of real vectors in x 1A
Projective controls will be designed such that
the closed-loop system will preserve blocks of
eigenvalues and corresponding eigenvectors of
the reference system. That is, if X and 4 are

decomposed as

A, 0
X=[X1X2],A=! ] (2.6)

0 A
then the projective controls will preserve
the eigenpairs (4,, X,).

1. Derivation of static projective controls

The static projective control system is to
share r eigenpairs of the reference system
(2.3), where » is the number of elements in
Define  the

reference eigenpairs to be retained by

the measurement vector .

£ 32 % BiR B TH 3
A BCuyi X, X,

[ } - 1 A, @D
Brefc Aref VVV [/Vr

where X,eR"™", W,eR™, and A, R™.

The static projective control has the form

w = Ky = K/(Cx , (2.8)
which gives the closed-loop system

¥ = (A+BK,Ox. (2.9)
For the projective control system to

preserve the eigenpairs (2.7), we require

(A+BK,0X, = X, A, . (2.10)
while (2.7) yields
AX, + BC W, = X, A, . (2.11)
Comparing equations (2.10) and (2.11)
yields
BK,CX, = BCuyW, (2.12)

Assuming CXr is invertible, the relation
(2.12) is satisfied by the feedback gain

K, = CyWA(CX) ™" (2.13)

The invertibility assumption requires first
that the output vy have the same number of
to be

retained

elements as the set of eigenpairs

retained, and second that each
eigenvector correspond to an observable mode
of the plant. While these two conditions are
only necessary, and not sufficient, experience
shows that CX, is

invertible.

practically always
In case it is not, then it can be
made invertible by a different choice of the
reference dynamics.

To relate this

controls with a

the projective
state-feedback

consider the special case where the reference

result to

reference.

control is based on an observer. Then (2.2)

becomes

(945)
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(A+BK,~LCx. + Ly , (2.14a)

1l

X

u = Kx., (2.14b)

where L 1is the observer gain matrix, and
K, is a state-feedback gain matrix. Then the

closed-loop system dynamics are described by

the matrix
A BK, \
F = (2.15)
LC A+BK,—LC
and the eigenvalues of the closed-loop

system will be

A(F) = A(A+BK) U A(A—-LC) , (2.16)

where A(-) denotes the spectrum of a

matrix. Defining the reference eigenpairs by

‘X,

Ar . (2.17)

| A  BK; JX,‘J

ch A+BK,—LC)\ Wy, W,

where now W,<= R"™" the static projective

control (2.13) becomes

K, = K.WACX,) ™", (2.18)

If, further, the retained eigenpairs (Ar.Xr)
all correspond to the state-feedback spectrum
A(A+BK,) , then it turns out that the
reference eigenvectors satisfy the relation

X, =Wy (2.19)

Then the
(2.18) becomes

static projective control gain

K, = K,X{(Cx) ' (2.20)

same as for the
state-feedback

the projective control

which is exactly the

projective  controls  with
reference. Therefore,
with output-feedback reference is seen as a
more general version of the projective control

with state-feedback reference.

2. Derivation of dynamic projective controls
Dynamic projective controls with output-

i

feedback reference are now derived for the
of both proper and strictly proper
A  pth-order

preserves p reference eigenpairs in addition to

cases

controllers. proper controller

the r already preserved by using static

feedback of the r available measurements. By

contrast, the pth-order strictly proper
controller  preserves only p  reference
eigenpairs, independent of the number of
measurements.

(1) Proper controllers
Let the »+p reference eigenpairs to be

retained be given by

A BCy) X, X, X, X, (4, 0
‘ l - [ [ ! (2.21)
B.olC Ay [\ W, Wy W, W/l0 4,
which yields
AX,+BC,,W,+X,A,, (2.22a)
AX ,+BCyWy=X,A,, (2.22b)
where  X,e RV, X, R™?, W,ye R™T,
Wy RIXb‘ A, e R'x'_ and A, E R”xﬂ' Then the

pth-order proper dynamic controller has the

form

¢ = A + By (2.23a)

u= C&+ Dy (2.23b)

which, with the plant (2.1), yields the

closed-loop system

A+BD.C  BC. )
(2.24)

B.C A

e

The closed-loop system is to retain the sets
of eigenpairs (Ar,Xr) and (Ap,Xp), such that

A+BDC BCF]'X, X»} _ {X' X’]{A' 0\’ , (2.25)
B.C Ao AW W,

w, willo a,

where WeR?™", and W,e R’ are arbitrary
matrices. Then from (2.25) we get

AX,+BD.CX,+BC.W,= X A, , (2.26a)

(946)
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AX,+BD.CX,+BCW,+X A, , (2.26Db)
BLX, +AW,= WA, (2.26¢)
B.CX,+AW,= WA, , (2.26d)

Comparing equations (2.22a-b) and (2.26a-
b) vields

D.CX,+C.W,= C,oWy , (2.27a)

D.CX,+C W= C, Wy . (2.27b)

Using (2.26c~-d) and (2.27a-b) we can get

an expression for the controller parameters as

DC CC‘ ‘C,Z,W,f C,e/Wf' C)(vr CX‘, !

] - l ’ { (2.28)
B, A, WA, WA, W, W,
Now, the controller parameters are

determined, except that some freedom remains
to choose W, and W,. Part of this freedom
consists of the choice of coordinates for the
controller, and therefore does not affect the
control law. To reduce the remaining design

freedom to a minimal number of parameters,

introduce the definitions of V.V, ¥, and Y,
as
CX, CX,\"! V, V,
[ ] - [ (2.29)
w, W, Y, Y,
Then (2.28) becomes
IDc C(y _ [Cv-/Wv/Vﬁ'Cme/Yr Cr-/Wv«Vn‘Cm/%/yp} (2.30)
B, A, WA,V,+WA,Y, WA, V,+WA,Y,
We can eliminate Vv, and V, using

V,=(CX,) 'U,=CX,Y,) and V,=—(CX,) 'CX,Y,.
Then, by changing the controller represen-
tation to an equivalent representation by

using the fact

(AY,,B,CY, D) (Y,A, Y,B.C.D), (2.31)

and substituting and

Y,=-Y,W(CX,) ',

Y,W,=1,~Y,CX,
we obtain the expressions

for controller parameters in terms of fixed

£ 32% BR £ TH 5

quantities and the free parameter matrix

Ly=Y,W, (2.32)
where L, R”™" .
The expressions are
A=A, +LN, , (2.33)
B.=(LyA,—A,L,—L,NL)CX)}, (2.34)
C.=K,~K,G, , (2.35)
De=(K,~C.L)CX,) ', (2.36)

where

G, = (CX,)CX,, Ny=GoAy=A,Go. K. CrogWy, and K,Coy (2.37)

The free parameter L, may be chosen to
position the remaining eigenvalues (residual
spectrum) in the open left-half plane, and to
minimize a chosen performance criterion for
the closed-loop system.

If the reference controller is based on an
observer, as (2.14), then the only change in
the formulas is that the reference controller

output matrix C,.; 1s replaced by the
state-feedback gain matrix K,. If only
eigenvalues within A(A+BK) are retained,

then the formulas for projective controls with
state~-feedback recovered as
(2.33-36) with the revised definitions

reference are

G,=(CX,) 'CX,, No= G,A,~A,G, K,= KX, amd K,= K,X,.(2.38)

(2) Strictly proper controllers
Next. consider the design of a pth-order

strictly proper projective controller,

§¢ = A6 + By, (2.39a)
u= Cé& . (2.39b)
The closed-loop system is given by
Z A  BC.
| - [ (2.40)
13 B.C A, &

The p reference eigenpairs to be retained

(947)
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are defined by

A BCr (X, X,
1 ) - [ J Ap. (2.41)
BC Ay 11 Wy W,
which vields
AX,+ BC, W= X,A,, (2.42)

where W, R, and A, R,

The corresponding invariant subspace of the

X, R™?,

projective control system is described by

A BC. X, X,
( H - Ap.  (2.43)
BC A, |\W, W,
which gives
AX,+BC,W,=X,A,, (2.44a)
AW, +B.CX, WA, (2.44b)
where W,eR*”™" is an arbitrary matrix.

Comparison of (2.42) and (2.44a) yields

CW,=CrWy , (2.45)

and hence the controller output matrix

Co= CoyWyW, ' (2.46)

The controller dynamics matrix is deter-

mined by postmultiplying (2.44b) by W, ' to
obtain

A= W(A,~W, 'B.CX)W, . (2.47)

The controller input matrix B. is a free

parameter in the design. A change of

coordinates and the introduction of the free

parameter matrix 1,=R”™" yields

A=A,~L,CX,, (2.48)
B.=1L,, (2.49)
C.= CropWyy. (2.50)
Again, for an observer-based reference

control, Cref is replaced by K,.

i B

3. Making an initial choice of the free
parameter

The completion of any dynamic projective
control design will require the determination
of the free parameter matrix L,. This will
normally be done by numerical optimization of
a selected performance index, such as a norm
of a given closed-loop transfer-function
matrix. The H: norm and Frobenius-Hankel
(FH) norm are often chosen, since either may
be readily optimized using gradient methods.
At each step of the optimization, including
the first, the value of the free parameter
must result in a stable closed-loop system.
Therefore, some discussion is in order here
concerning the initial choice of 1, for the
optimization.

For the proper

(2.33-36), the initial choice L,=0 gives

projective  controller

A.=4, (2.51)
B,=0 (2.52)

Co= CrofWys— CoW,, (CX,) 1CX, (2.53)

D= CfW (CX ) 1. (2.54)
Then the proper projective controller
reduces to the static projective feedback

(2.13). If the

stabilizing,

static projective control is
then the initial choice L,=0 is
admissible. If it is not, then finding a
stabilizing initial choice is equivalent to an
pole-placement

auxiliary output-feedback

" which may be difficult to solve.

problem, '®
Therefore, the existence of a stabilizing static
projective control is valuable for finding a
low-order dynamic projective controller.

An output-feedback reference control has
more eigenvalues from which to choose than
state-feedback

Therefore, a greater number of static pro-

has a reference  control.

jective controls may be computed using an

(948)
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output-feedback reference. This increases the
chances that one of them will be a stabilizing
control, and will, if necessary, provide an
easy starting point for computing a dynamic
of the

projective controller lowest possible

order.

IIT. Example Problem

To illustrate the use of projective controls
with an output-feedback reference, consider a

system characterized by

P00 1 0 0 0 0
~3947.80 -5.50 —17.90 5.50 10 0
A= 0 -1 0 1 o | . B= 10
0 0.55 -1.19 ~-0.55 -1 0
0 0 0 0 0 1
0 0 1 0 0
c - (3.1)
0 0.55 —1.79 —0.55 -1
This system represents a two-degreé-of-

freedom quarter-car model with a slow

actuator used for active suspension control

design in'®'. The open-loop poles are given by

A(A)={—2.75162.89, —0.27+71.31, 0.00}. (3.2)
A state-feedback control with gains
K= [18.23 —0.005 21.23 15.25 —6.37] (3.3)

yields a stable closed-loop system with the
spectrum

AA+BK)= —2.16+762.89, ~1.56+72.48, —3.77.(3.4)

Since there are two measurements, two
eigenvalues may be retained using static
projective  controls.  Therefore. using a

state-feedback reference. two different static
projective controls are possible., one to retain
each of the two complex-conjugate pairs of
Neither  of

stabilizes the closed-loop system. [t

eigenvalues. these  controls

is also

£ 32% B B TH 7

possible to compute a static projective control

to preserve the single real reference
eigenvalue by using either one of the two
measurements. Such controls also fail to

stabilize the system.

To continue with the design using the
state-feedback reference, we would have to
consider dynamic projective controls. Instead,
we now proceed to wuse static projective
controls with an output-feedback reference.
By using an observer-based controller with
the given state-feedback gain K, (3.3) and

the observer gain.

-0.02 —0.23
—0.44 5197
L= 0.62 —0.25 (3.5)
-0.22 0.02
-0.28 0.22

the spectrum of the new reference system is

A(F)= {-2.76+/62.89, —1.56*72.48, —3.77,

(3.6)
—16.92+765.07, —0.47+j1.04, ~0.67},
where
A BK,
F = (3.7)
LC A+BK,—LC |
Now, in addition to the state-feedback

eigenvalues, the reference spectrum contains
the observer eigenvalues. Five different static
projective - controls are now possible, one
corresponding to each complex-conjugate pair,
the

eigenvalues. The spectrums of the closed-loop

and one corresponding - to two real
systems for the five possible choices are given
in Table 1. The first two rows of the table
correspond to the projective controls that
retain the complex state-feedback eigenvalues.
The controls are identical to those computed
using the state-feedback reference, and do not

stabilize the system. The next two rows of the

(949)
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table correspond to the controls that retain
while the

last row corresponds to that which retains

the complex observer eigenvalues,

one real state-feedback eigenvalue and one
real observer eigenvalue. A stabilizing output-

feedback gain,

K,= [0.67 0.911, (3.8)

results from choosing to preserve a pair of
observer eigenvalues.

This example has shown that the use of an
output-feedback  reference for  projective
controls can have advantages over the use of
a state-feedback reference. A stabilizing static
feedback has the

where none had been found previously.

been found for system,

Table 1. Spectrums of closed-loop systems

Selected Modes Feedback Closed-loop Spectrum Stability
(2 eigenvalues) Gains {5 eigenvalues) Property
-2.761j62.89 [(-5.45 -0.01) | -2.76+j62.89, -0.91-j1 83, 1.30 Unstable
— _— ’7 - P RS — — — — - I
-1.56+j2.48 -18.78 0.46] | -1.56%;2.48, -2.78+j62.87, 2.17 Unstable
-16.92j65.07 (11839 9.00) 1 -16.92£j65.07, -4.95;18.37, 28.58 | Unstable
-0.477j1.04 (067 0.91) Stable*
A S
-3.77. -0.67 (-0.42 3.73 Unstable

* The only case that yields a stable closed-loop system

IV. Conclusion

An controls
approach to allow the use of an output-

is derived. The

extension of the projective

feedback reference system

extension applies to both strictly proper and_

proper projective controllers. The original

projective controls are recovered when an
observer-based reference is used and only
state-feedback An

example shows that the proposed approach

modes are retained.
not only satisfies all the properties of the
with state—feedback

reference but also provides more freedom in

projective controls

Al &

the selection of the modes to be retained in
the
addition, the approach makes it easier to find

reduced-order closed-loop system. In

a dynamic projective controller if necessary to
provide satisfactory robust performance of the

system.
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