Abstract
For a distribution on the unit sphere, the set of eigenvectors of the second moment matrix is a conventional measure of orientation. Asymptotic confidence cones for eigenvector under the parametric assumptions for the underlying distributions and nonparametric confidence cones for eigenvector based on bootstrapping were proposed. In this paper, to reduce the level error of confidence cones for eigenvector, double bootstrap confidence cones based on prepivoting are considered, and the consistency of this method is discussed. We compare the perfomances of double bootstrap method with the others by Monte Carlo simulations.