Abstract
In this paper we consider kernel type estimator of the spectral density at a point in the analysis of stationary time series data. The kernel entails choice of smoothing parameter called bandwidth. A data-based bandwidth choice is proposed, and it is obtained by solving an equation similar to Sheather(1986) which relates to the probability density estimation. A Monte Carlo study is done. It reveals that the spectral density estimates using the data-based bandwidths show comparatively good performance.