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Abstract - A hyperbolic model is used to understand quantum ballistic transport through a mi-
croscopic constriction in a two-dimensional electron gas. The constriction is given by two hyperbolas
of B=f, and - B, in elliptic coordinates (¢, B). The quantized conductance G of the constriction is
calculated by using even Mathieu's functions Se,(s, ) which satisfy Schridinger's equation and the
hyperbolic boundary conditions. It is found that the number of channels, N, depends not only on the
canstriction width W but also on the curvature-related coordinate B.. It is also found that tunneling,
depending on B,, is the important factor to determine the shape of the quantized G-curve. At a fixed
W. G changes continuously with B, but sometimes undergoes a discrete change when N changes by
one due to large change in B,. For large B,, where tunneling is impossible, there exist only a discrete
change in (.

Q@ o A vHe qfso] ua) Eade E }‘o}c 24%1 4 P“’l WAL AL A
soleh. B e B AT, B)om B=P, 1 B'f— ‘o g
el G BRI A 4] Feol A g]uo b 2] ) A
gl Anetalt. 1 Adks A ol % W ohe _ A E

Lk g el 1 Gol 1gfaze] ek LmLH FRE 02908 Yehy 73

Ul 4t 45 %‘;'%‘qu 1 N JFQ
LA Wghek gy Nt “49}0}01 Gz Bl
el Alis Gi= AlvtAl o] Myl Bol 5 OM

J pol 915 wale] G 1540w MaAL T pot
ot wskaslu). whol Blxigol A 5)-80] qhulis p.e)

e}

1. Introduction plained by the Landaucr-Biittiker formula [6-8]
In the current work we study the shape effects G :(2%2_) 2T, m
of the quantized conductance in a ballistic con-
striction. When the width, W, of the constriction where 7T, is the transmission coefficient for the
is formed in the two-dimensional eclectron gas transverse state n. When T,==1, Eq. (1) reduces
(2DEG), the conductance G has been observed to to the empirical relation = (2e /h) N., where N
increase stepwisely [1-5]. The observed G is ex- is the number of channels available for a ballistic
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transport [9]. The N. depends on the width W of
the constriction and is semiclassically given to be
the greatest integer not more than k.W/n. In the
two parallel boundaries, there cxist the quantized
transverse energy A,. The A, becomes high as the
width W becomes small. Thus, only the diff-
erence E,
longitudinal direction and then A, behaves like an
effective potential barrier for transport through
the constriction. The dominant factor in det-
ermining A, is the shape of the constriction at the
bottle-neck. It is known that the existence of a
long channel with two quasi-parallel boundaries
is not essential condition for quantized energy
level A, If A, is given, we can evaluate the
transmission coefficient 7, and obtain the quan-
tized conductance G as a function of shape.

of T, several
models of constrictions have been used. They are
wide-narrow-wide waveguide [10], plane-channel-
plane [11], parabola [12], hyperbola [13-15], del-
ta-function [16], and arbitrary taper model [17].
Among those models, the hyperbolic constriction
is of much interest because it is a coordinate
shape. By the way, the saddle-point potential
model [18] is, even though it is not realistic,
good in explaining the quantization of con-
ductance.

It is argued [19] that the conductance quant-
ization phenomena is quite fragile, and is easily
destroyved by decreasing the elastic and the ine-
lastic scattering lengths compared with the con-

A. 1s available for motion along the

For theoretical calculations

striction size. As the length of the constriction is
increased, the conductance quantization -effect
smoothly goes over to the universal quantization
regime since the system changes from being
ballistic to diffusive.

In the present work, we first use the hyperbolic
model to understand the quantum ballistic tran-
sport through the constriction and examine the
shape effects in quantization of the conductance
G. To do that, we solve the two-dimensional
Schrédinger's equation to obtain the transmission
cocfficient T, for a hyperbolic constriction. Since
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Fig. 1. Elliptic Coordinates (ct, ). The transformation
is x==csinhosinf and y=c coshat cosfl, where ~ < oo
<o, 0=B<mn, and ¢ is the scale factor. The con-
striction consists of two hyperbolas of B=f}, and 7t - B..
The angular coordinate B represents the angle between
the wy-axis and the coordinate. Thus the difference m/
2 - B. refers the slope of the hyperbola. Here, B,=15

the hyperbola is a coordinate shape, we can find
the conductance G as a function of shape factors,
. and W. This will be numerically made. In the
current work following the previous work [15,
21], we will focus on the curvature-dependence
of the channel number. The experimental work
on that subject has not been made yet.

2. Hyperbolic Model

We consider a ballistic point contact con-
necting two wide regions of 2DEG. The point
contact can be regarded as a narrow channel
which has a hyperbolic shape. By convenience,
we introduce elliptic coordinates (o, B) defined
by x=csinhosinf and y==c cosho cosP, where —
co<a<oo, 0<<B<n and ¢ is the scale factor
(see Fig. 1). The constriction consists of two hy-
perbolas of B=p, and P=mn - B.. The diference
7/2 - B, refers to the slope of the hyperbola of f..
The width, W, of the constriction at the bottle-
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neck (a=0) is 2c¢ cosp,.

The two-dimensional Schrodinger equation for
an electron in the potential V(r) is written in the
form

h? 1
2m c(cosh?o—-cos?f)

¥ N ek
oo I

+VW=EY¥ ©)

It is assumed that V=0 for B,<p<n-f, and V
=o for <P, and f>n—P.. Thus, putting ¥
(o, B)=w(a) x(B), Eq. (2) leads to the two one-di-
mensional equations

d*y

Z 4 4 (p—scos?f) ¥=0, 3

N ( B x €)

2

% — (b—s cosh?c) y=0, ()
where

s =2mc? E/% 2, Q)

b=2mc> M 42 (6)

Here, A is the constant of separation, which
means an effective potential barrier height in Eq.
(4). The constants s and b are dimensionless en-
ergies associated with £ and A. Equations (3) and
(4) arc called Mathieu's equation and Mathieu's
modified equation, respectively [20].

The solution of Eq. (3) with the hard wall
boundary conditions are even Mathieu's functions
Se.(s, B), where n is the number of zeros in the
interval 0<B<mn. For a given constriction of J3,
such that Se,=0 at B=p,, we can obtain charac-
teristic value b, for every s. The b, or A, is the
quantized transverse energy obtained from the an-
gular equation, Eq. (3). Since the difference E, —
A, is the energy available for the longitudinal tran-
sport through the constriction, A, plays the role as
an effective potential. Thus, if the energy lies
between A, and E,, then the corresponding state
contribute to the conduction and is regarded as a

ghatal 23l 2], Al 43 Al 235, 1995

5 1 L 1 T 1 T
4 —
~
K
~~
Oy
o 3L _
L2
A
&)
2 b J
1k N
0 1 i ] 1 | 1
0 20 40 60 80 100 120 140

W{nm)

Fig. 2. Conductance G of the Hyperbolic Constrictions.
Here, B,=30, 35 and 40°. The G are calculated by solv-
ing Schrodinger's equation in elliptic coordinates.
Three constrictions have the same eigenmodes in the re-
gion 0<W <120 nm (see Table 1). The shape effect
due to the different slope of the constriction. is the
slope of the G-curve.

channel. Another contribution to the conduction
is the tunneling which depends on the potential
geometry. Of course, this is also determined by
the constriction geometry.

The major contribution to the potential is due
to the geometry of the bottle-neck. Then we ex-
pand cosh’a about a=0 and keep the first two
terms. Thus Eq. (4) is approximately reduced to

d’y  2m
+ == [Ep = (A —Ep )] w=0, 7
A T = (- Ep )] y 7
where A,= 1 b,/(2mc?). Equation (7) is Schro-
dinger's equation for a scattering problem for a
potential A, - E.o’. For a such type of potential,
the transmission coefficient 7, is given by [22]

_ 1
" N+exp(-me, ) ®
& =(s —ba(s )12 )

Substitution of Eq. (8) into Eq. (1) yields the con-
ductance G of a hyperbolic constriction as a func-
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Table 1. First Few modes Se,(s, B) and Number of
Channels N,. For s<150, stable even Mathieu func-
tions are limited by the boundary condition, Se(s, B) at
B=B. and 7 - B.. The constriction is given by two hy-
perbolas of B=f, and m B, The N_ at W=90 nm is
the number of channels, ie. even Mathieu's functions
denoted by asterisk*.

Constriction First four stable N, at
modes W=90 nm
B,=15° Se.*, Se,, Se,, Se, 1
20° Se.*, Se.*, Se., Se, 2
22.5°  Se*, Se’, Se, Se, 2
30° Se*, Se*, Se*, Se, 3
35° Se*, Se*, Se.*, Se, 3
407 Se*, Se*, Se*, Se, 3
45° Se.*, Sei*, Se,*, Ses 4

tion of [3, and s (or the constriction width W).
3. Calculations and Results

The solution which satisfies Eq. (3) and the
hard wall boundary condition is only even
Mathieu's functions Se (s, B) with n>2. [15,20]
With the table of the expansion coefficients of
Se,(s, B) [20], we made numerical calculations of
Se.(s, B) for 0<<s<100 and 0<B<70". For s>
100, we use approximate cxpression of Se(s, B)
[20]. From the obtained Se(s, B) we found s
such that Se,=0 at B=P, and - B,. We also
used the numerical table to obtain the charac-
teristic values b,(s) for a given 5. Among all ob-
tained b.(s), we chose the appropriate b,(s) under
the condition of stable solution for Se.(s, ). The
stable mode »n can contribute to the transport
through the constriction if s is less than (0.5 W/
cosP,), where W=2+s cosB./k; and k. =0.15/
nm. Thus the channel number N, is limited.

Using Egs. (8) and (9) along with the obtained
b.(s), we calculated the transmission coefficient
T, and then the conductance G. These results arc
shown in Figs.2 and 3. In Fig. 2, we plot the
quantized G for hyperbolic constrictions of B,=
30, 35, 40°. These choice of B, are made because
such constrictions have the same functions Se,,
Se., Ses, Se,, -+ as the first few possible modes

8 T T T T T T L1 T
5+ .
—~
A
~
o« 4 —
[
Y
St
&) I e S 4
2 - B
1+ N
O H 1

0O 20 40 60 80 100 120 140 160

W (nm)
Fig. 3. Conductance G of the Hyperbolic Constric-
tions. Here, B,=15, 22.5, 30 and 45°. The G are cal-
culated by solving Schrodinger's equation in elliptic
coordinates. These graphs show the shape effect in

both N, and the slope of G-curves. At the same W, N,
depends on f, only.

(sec Table 1). In the region of interest for W,
they have the same N.. Thus, we can know the
shape effects in G-curve for fixed G. According
to Fig. 2, the large-B, curves are clearly step-like
and the small-§,.

The feature mentioned above should be mod-
ified if we expand the values of 3, beyond the re-
gion of the same N.. In Fig. 3, we have shown
the quantized G for constrictions of ,==15, 22.5,
30, 45°. Differently from Fig.2, N. in Fig. 3
changes with P, even when W is fixed. For con-
strictions of (,==45", there appears the first mode
Se(s, PB) in addition to the modes for the con-
striction of B,=4(0°(sec Table 1). According to
Fig. 3 and Table 1, the constriction of B,=45
has 1 more channel than that of B,=30" and 3
more channels than that of B,=15". This implies
that quantization of transverse states takes place
more casily for a smoothly changing shape of the
constriction (i.e. for large B,) than for a sharply
changing shape (i.e. for small B,). The difference
G-curves of same N, are due to different tun-
neling over constrictions of B,=15" through 45°.
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Tunneling effect is smoothing the G-curve which
becomes slant-like. 1t is noted that the current
work have shown the curvature-dependence of N..

We also obtained the quantized G for con-
strictions of B,>45°. In the region of B,> 45", we
have no additional channels. As mentioned be-
fore, Se.s, B,) is the lowest mode solution among
the even Mathieu's functions Sex(s, B,). Thus, we
can not expect a new channel as obtained in Fig.
3 and Table 1. We have also found that for B, <
10°, no quantized channel available for transport
for W<120 nm. This implies that the associated
confining region is a little smaller than needed
for the 'usual quantization. By the usual quant-
ization, we mean the cnergy quantization in the
hard-wall boundarics. The fact that for B, <10°,
there oxist no quantized transverse states does
not imply no transport through the constriction.
The reason is that for large W, transport should
be possible irrespective of the slope of con-
striction. Since there are no quantized barrier, the
conductance may be proportional to the width W.

According to the results for B,<<45°, we argue
that a sort of smoothness and length of the chan-
nel arc necessary for considerable number of
quantized steps of G. By the results for B,>45°,
we also argue that the strict smoothness is not ne-
eded for quantization. This conclusion is con-
sistent with experimental and theoretical works [1,
2,13, 14]. Kawabata [13] argued that the ex-
istence of a long quasi-onc-dimensional channel
with parallel boundaries is not an essential con-
dition for the quantization of conductance. Yose-
fin and Kaveh [14] argued that conductance
quantization can be obtained in a quite general
provided that it
creates a narrow bottleneck region.

smooth confining potential,

4. Conclusions

In the present work, we have reported several
features in quantum ballistic transport in the con-
striction. First, a sort of smoothness and length
of the channel arc necessary to obtain a set of

gb=pslgrstela], A 4 Al 235, 1995

quantized steps of the conductance. However,
such a kind of requirement is not shown to be
strict. Second, the number of channels N, is a
function of the constriction width and curvature.
The experimental attempts to show the curvature
dependence of N. has not been made yet. Third,
tunneling is a major factor to determine the shape
of the G-curve. As a constriction becomes
smooth and long, the G-curve becomes stair-like
because of less tunncling.
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