Blackboard Scheduler Control Knowledge for Recursive Heuristic Classification

  • 발행 : 1995.01.01


Dynamic and explicit ordering of strategies is a key process in modeling knowledge-level problem-solving behavior. This paper addressed the important problem of howl to make the scheduler more knowledge-intensive in a way that facilitates the acquisition, integration, and maintenance of the scheduler control knowledge. The solution a, pp.oach described in this paper involved formulating the scheduler task as a heuristic classification problem, and then implementing it as a classification expert system. By doing this, the wide spectrum of known methods of acquiring, refining, and maintaining the knowledge of a classification expert system are a, pp.icable to the scheduler control knowledge. One important innovation of this research is that of recursive heuristic classification : this paper demonstrates that it is possible to formulate and solve a key subcomponent of heuristic classification as heuristic classification problem. Another key innovation is the creation of a method of dynamic heuristic classification : the classification alternatives that are selected among are dynamically generated in real-time and then evidence is gathered for and aginst these alternatives. In contrast, the normal model of heuristic classification is that of structured selection between a set of preenumerated fixed alternatives.