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Knowledge Acquisition on Scheduling
Heuristics Selection
Using Dempster-Shafer Theory(DST)
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ABSTRACT

Most of solution methods in scheduling attempt to generate good solutions by either developing algorithms
or heuristic rules. However, scheduling problems in the real world require considering more factors such
as multiple objectives, different combinations of heuristic rules due to problem characteristics. In this respect,
the traditional mathematical approach showed limited performance so that new approaches need to be
developed. Expert system is one of them. When an expert system is developed for scheduling one of
the most difficult processes faced could be knowledge acquisition on scheduling heuristics.

In this paper we propose a method for the acquisition of knowledge on the selection of scheduling heuristics

using Dempster-Shafer Theory(DST). We also show the examples in the multi-objectives environment.

Key Words : knowledge acquisition, job shop scheduling, Dempster-Shafer Theory (DST), multi-objectives

scheduling, statistical reasoning

1. Introduction

Scheduling problem involves allocating resources over time to perform a set of tasks(Baker, 1974), and
it is also a decision process that arranges the necessary activities and controls resources to achieve a goal(Han,

1991). Scheduling has been applied to various domains such as job shop scheduling, flexible manufacturing
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systems(FMS) scheduling, robot scheduling, personnel scheduling, and so on.

Scheduling, in general, requires solving a problem under various constraints such as limited resources
and precedence relationships. Therefore, scheduling cannot be performed without taking such constraints
into account and the use of those constraints guides the schedule generator by reducing the search space.

Subject to both the precedence constraints and the resource constraints, the schedule decision is to deter-
mine when each operation should start to optimize the given objectives. There can be many kinds of objectives
in scheduling depending upon the managerial perspectives. Rinnooy Kan(1976) found 26 different objectives

and classified them into 6 objectives as follows :

@ Minimization of the makespan(or project duration)
@ Minimization of the sum of completion times
® Minimization of the weighted sum of completion times

@ Minimization of the sum of late times

(® Minimization of the weighted sum of late times

® Minimization of the maximum late time

Since the late 1950s, many different scheduling approaches have been applied to resource-constrained
scheduling problems, including integer programming (Wagner, 1959), dynamic programming (Held and Karp,
1962), branch and bound methods (Carlier and Pinson, 1989), PERT/CPM techniques (Wiest, 1969), and
various heuristic procedures (Adams et al, 1988 ; Davis and Patterson, 1975).

Numerous researches have been reported to be successful for the problems of single objective and moderate
size, and some heuristic methods attempted to tackle more realistic problems with an acceptable computational
time limit. However, these approaches are limitedly applied only to those problems that are constrained
by a single and unchanging objective. In those problems resource conflicts are usually resolved by applying
a single heuristic rule throughout the whole scheduling horizon.

Recently, new approaches such as simulated annealing(Laarhoven ef al, 1988) and expert systems(Kusiak,
1990) have been applied to resource-constrained scheduling problems. Particularly the expert system provides
a completely different way of solving the problems, compared to analytical ones, in the sense that it utilizes
knowledge of human expertise that can’t be quantified. In scheduling problems, knowledge of human expertise
is related to the way to sequence the activities according to certain rules. When an expert system is developed,
however, the most critical issue is how to acquire the scheduling knowledge and describe it systematically
in the system.

In this paper we suggest a method for the selection of heuristic rule(s) if multi-objectives are to be conside-

red like real world problems. The problem we choose is tardiness-oriented job shop scheduling and dispatching
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heuristic rules are taken from several papers such as Weeks(1979) and Baker and Bertrand(1982). The
performances of each rule are analyzed for the problems generated artificially. And then the most appropriate
heuristic rule for the problems with multi-objectives is selected using Dempster-Shafer Theory(DST).
This paper is organized as follows. In the following section, the heuristic rules employed in this paper
are described. The section 3 explains how to acquire the most basic knowledge on the performance behavior
of each rule using simulation. The section 4 shows how to select the most promising rule if multiple objectives

are considered simultaneously. The section 5 presents conclusions.

2. Tardiness-Oriented Rules For Job Shop Scheduling

In a job shop problem, # jobs have to be processed on m machines assuming that : (O a machine can
process only one job at a time, 2 the processing of a job on a machine is called an operation, 3 an operation
cannot be interrupted, @ a job consists of at most m operations, & the processing order of a job is given
according to this job, ® the operation sequence on the machines are unknown and have to be determined
in order to optimize given performance measure(s) (Carlier and Pinson, 1989).

In solving those scheduling problems a number of heuristic rules could be employed. Among them, those

to bé used in this paper are to be briefly introduced as follows.
2.1 Shortest Processing Time (SPT)

SPT rule is one of the most popular rules for any performance measures. It has been employed for various
objectives and showed excellent performances in various problems. SPT sequences are made by assigning

all jobs in the order of nondecreasing processing time as follows :
i Spra = Spi
where pry is the processing time of the job that is processed i

2.2 Earliest Due Date (EDD)

EDD rule is another rule that is used often for the due date-oriented scheduling. EDD sequences are

made by assigning all jobs in the order of nondecreasing due dates. Since due dates for individual operations
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are usually unknown in the general job shop scheduling problems, they need to be computed from the
due date of each job. As an extension of EDD rule for single machine scheduling(Han et al, 1995), the

due date of an individual operation can be computed as

5= { d; if operation 1 is the last operation in the job j.
’ dx— pi, otherwise.

where, operation k is the direct successor of operation i of job j, ps is the processing time of operation

k of job j, d; is the due date of job j, and di and d are due dates for operation & and 7 of job j, respectively.

2.3 Job-based Modified Due Date (MDD)

At time ¢, modified due date of an operation 7 of job j is computed in the following way -

dj.‘ =Max { d;‘, t+; ij }

where, d; is the due date of job j, m is the number of operations in job j, and p; is the processing time
of operation 2 of job j.

MDD sequences are made by assigning all jobs in the order of nondecreasing modified due dates(Baker
and Bertrand, 1982).

2.4 Operation-based Modified Due Date (MOD)

MOD is computed in the similar way as MDD rule except that MOD takes into account each operation’s

processing time such that

g
d=Max { 35 pu* (D)4 |

where, P; is the sum of the processing time of all operation for job j.

2.5 New Operation-based Modified Due Date (NDD)

Another modified due dates(NDD) can be obtained as follows (Hwang, 1995)
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g = {d;, if operation i is the last operation in the job j,
" " Max(ds—ps, t+pw), otherwise.
where, operation % is the direct successor of operation ¢ of job j, pi is the processing time of operation

k of job j, d; is the due date of job j, and d; and d; are due dates for operation % and 7 of job j, respectively.

3. Comparisons of Each Rule

3.1 Computational Experiences

Computational comparisons were conducted to acquire knowledge on the performance behavior of each
rule over a range of due date tightness, that is, the ratio of the total processing time to the due date.
A simulation program was developed in ART-IM, one of expert system development tools, and run on an
IBM PC/486.

The experimental design for the simulation was followed from Posner’s(Posner, 1985). The individual
operation’s processing time(p;) is generated from a discrete uniform distribution over L1, 10]. Due dates
for each job are generated using two number ¢ and 8 with a Cla,, gz, as) and B C(by, bs, bs), where @, and
b, are non-negative constants and from a discrete uniform distribution over integer interval of [a%* > i
B* > p,l. Consequently, a; and b, determine the due date tightness for each problem.

For each rule, 150 problems, sized of 10 jobs and 10 machines, were simulated. {Figure 1> shows the

simulation results.
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(c) Number of Tardy Jobs (d) Tardiness Variance
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{Figure 1) Comparisons of Each Heuristic

From the simulation results, followings are observed :

@ Operation-based modified due date(MOD) usually generates better solution than job-based modified
due date(MDD) except for the problem of minimizing the number of tardy jobs.

@ EDD and NDD outperform other rules in most of the problems.

(3 None of the rules shows dominant performance behavior.

@ The best solution rule(s) depends upon scheduling objectives and due date tightness.

Among the results, last two give us a following implication: since each heuristic rule performs differently
depending upon scheduling objectives as well as due date tightness, it could be possible to single out a

rule which outperforms the others as long as the information on the characteristics of a problem is known.
3.2 Summary of the Simulation Results
To get a more precise knowledge on the performance of each rule, solution behavior is further analyzed.
First, in order to see the general performance behavior of each rule from a simple point of view, we classified
the behavior patterns into three interval categories over which performance behaves differently from those

of the other intervals as follows :

O category 1 named as ‘Lower’ level if due date tightness is less than 0.58,
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O category 2 named as ‘Medium’ level if due date tightness is between 0.58 and 0.75, and
O category 3 named as 'High’ level if due date tightness is greater than 0.75.

The points, 0.58 and 0.75, are intentionally selected by observing the cross points of each rule’s performance
over the range of due date tightness. Of course, the classification could be refined further if more simulations
are proceeded or other information is given.

Second, performances of each rule in the three interval categories are summarized as in {(Table 1).

{Table 1) Percentage of Best Solution Found

(a) Total Tardiness (or Mean Tardiness)

Rules Lower Medium High Mean
EDD 91.6 20.6 32 385
SPT 388 29 61.3 343
MDD 64.7 29 0.0 22.5
MOD 68.2 50.0 29.0 49.1
NDD 92.9 26.5 12.9 44.1
MAX 92.9 50.0 61.3 68.1

(b) Maximum Tardiness (or Tardiness Variance)

Rules Lower Medium High Mean
EDD 95.3 58.8 64.5 72.9
SPT 353 29 0.0 12.7
MDD 64.7 50.0 12.9 425
MOD 68.2 29 12.9 280
NDD 94.1 294 226 487
MAX 95.3 58.8 64.5 729

(¢) Number of Tardy Jobs

Rules Lower Medium High Mean
EDD 894 29 0.0 30.8
SPT 388 824 419 54.4
MDD 70.1 26.5 87.1 61.2
MOD 70.1 324 3.2 352
NDD 91.8 59 6.56 347

MAX 91.8 82.4 87.1 87.1
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Then the percentage of best solutions for each rule generated as in {(Table 1) is rephrased into the
literal term of ‘goodness’ as in (Table 2). Performance of each rule is expressed as ‘BEST’, ‘GOOD’,
‘BAD’ and ‘WORST’ according to their percentage of best solutions generated.

Applying the best rules for each due date tightness level, the percentage of the best solution found can
be dramatically increased. For example, in total tardiness problem, MOD seems to be the best rule since
49.1% of the solutions it generated turned out to be the best solutions. However, if we could employ different
heuristic rule in the different due date tightness level such as NDD for the ‘LOWER’ level, MOD for
the ‘Medium’ level, and SPT for the ‘High' level, the percentage of the best solutions generated can
increase to 68.1%.

In the case that the percentage of the best solutions generated for each rule is unknown, possibility for

{Table 2) Classifications of the Performances of Each Rule

(a) Total Tardiness (or Mean Tardiness)

Rules Lower Medium High
EDD BEST GOOD BAD
SPT WORST BAD BEST
MDD BAD WORST WORST
MOD GOOD BEST GOOD
NDD BEST BEST GOOD
(b) Maximum Tardiness (or Tardiness Variance)
Rules Lower Medium High
EDD BEST BEST BEST
SPT WORST BAD BEST
MDD BAD WORST WORST
MOD GOOD GOOD BAD
NDD BEST GOOD GOOD
() Number of Tardy Jobs
Rules Lower Medium High
EDD BEST WORST WORST
SPT WORST BEST GOOD
MDD GOOD GOOD BEST
MOD GOOD WORST GOOD
NDD BEST BAD WORST
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the best rule as in (Téble 2>, rather than probability, could be obtained through interviewing experts, analyzing

former studies, and so on.

Consequently, if there is only one objective we can easily generate the better schedules by classifying
a given problem to one of those three due date tightness levels and applying the best rule selected for
the category. However, if there are multi-objectives, we must proceed a little more complicated process.
In the following section, a framework for finding the best rule in the job shop scheduling problems with

multi-objectives will be discussed.

4. Statistical Reasoning for Multi-Objectives

In cases of the problems with multiple objectives, one of possible methods of selecting the best rule

would be as follows .

O select the rule which have

M(Zx { iw,*ﬂk,}

where, w; is the weight on objective 7, p. is the percentage of the best solutions found for the heuristic
rule £ and the objective 1.

However, it is not always possible to have the p.’s .and also very likely to be controversial to determine
the value of each w.. Thus, to overcome such a limitation, statistical reasoning methods could be applied.
There are several statistical reasoning methods : Bayesian network, certainty factor, Dempster-Shafer Theory
(DST), fuzzy logic, and so on(Rich and Knight, 1991).

Here we decided to use DST because

© DST could easily manipulate propositional value such as ‘BEST’, ‘GOOD’, ‘BAD’, ‘WORST’, and further
even ‘Unknown’,

O Computational procedure is simple and easy to understand, and is based on the theory of belief.

Even though DST has the problem of combinatorial explosion, it does not seem to cause serious problem
because there are not so many candidate rules in most of real world problems. We show how to find the

best rule using two examples in the following.
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4.1 An Example of Equally Weighted Multi-Objectives
Suppose that a problem has high due date tightness with objectives of minimizing the total tardiness
and the number of tardy jobs. Among the several heuristic rules, the most promising rule can be selected

by the following procedure (for more reference on DST see (Rich and Knight, 1991)) :

(1) Assign a belief value b(hlr) for each heuristic rule and tightness level as follows :

4, if r=BEST,

3, i r=GOOD,
bhir)= .

2. if r=BAD,

1, if r=WORST,

where, & is a heuristic, [ is the level of tightness, and 7 is the performance. For each cell marked ‘unknown’,
assign average value (In the above case, the average would be 2.5).

(2) Compute belief masses from {Table 2 (a)? as follows

b(SPT, high, BEST)

b(EDD, high, BAD)+b(SPT, high, BEST)+b(MDD, high, WORST)+
b(MOD, high, GOOD)=+b(NDD, high, GOOD)

m;(SPT) =

=4/2+4+1+3+3)=4/13
m(MOD)=3/(2+4+1+3+3)=3/13
m(NDD) =3/(2+4+1+3+3)=3/13
m(®) =3/2+4+1+3+3)=3/13

Here, the BAD and the WORST heuristic rules such as EDD and MDD were ignored for the simplicity
of computation. The set @ consists of {EDD, SPT, MDD, MOD, NDD}. Thus the fact that the best rule

set is @ means that the best rule would be one of those five rules, which means again that we do not
have knowledge on the best rule.

(3) Compute belief masses from {Table 2 (c)> as follows

(MDD, high, BEST)

b(EDD, high, WORST)+b(SPT, high, GOOD)+b(MDD, high, BEST)+
»MOD, high, GOOD)+b(NDD, high, WORST)

mMDD) =
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=4/(1+3+4+3+1)=4/12
mASPT) =3/(1+3+4+3+1)=3/12
mAMOD) =3/(1+3+4+3+1)=3/12
mA@)  =2/(1+3+4+3+1)=2/12

Again, the BAD and the WORST heuristic rules such as EDD and NDD were ignored for the simplicity
of computation.

(4) Combining Evidences (Dempster’s rule of combination)

To calculate the combinational possibility of being best rule with two equally weighted objectives, combine

two evidences such as shown in (Table 3.

(Table 3) Combining Evidences for the Problem of Equally Weighted

my({MDD}) m2({SPThH m{MOD}) m(6)
=4/12 =3/12 =3/12 =2/12
mi({SPTH L2 {SPT} Lo {SPT}
=4/13 16/156 12/156 12/156 8/156
m({MOD}) P D {MOD} {MOD}
=3/13 12/156 9/156 9/156 6/156
mi({NDD}) e/ e P {NDD}
=3/13 12/156 9/156 9/156 6/156
mi(6) {MDD} {SPT} {MOD} L
=3/13 12/156 9/156 9/156 6/156

my 0 ma({SPTY = Zmi(ISPTV) - mo({SPTH)

=(12+9+8) / 156=29/156
mi & m({MOD)=(9-+9+6) / 156=24/156
my &t mo({MDD})=12/156
my 13 mo({NDDY}) =6/156
my O maA6) =6/156
my T m() =(29+24+12+6+6)/156=77/156
Where, m; O m,-(Z):Xﬂ;Zm,(X) - m{(Y) and U is the union of the sets resulting from combining two eviden-

ces due to two different objectives.
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(5) Normalization

Since the resulting belief masses do not sum to one, normalization is required as follows.

m, Xt mo({SPT}) =29/77
m1 MZ({MOD}):24/77

m1 o m({MDDYH=12/77
m, & m(INDD}) = 6/77
6/77

my I mz(@)

(6) Repeat from (3)to (4) until all of the objectives are considered.
(7) Select a rule
From the above computation results, we select SPT rule in the problems of high due date tightness if

two objectives, minimizing the total tardiness and the number of tardy jobs, are considered with equal weights.
4.2 An Example of Unequally Weighted Two Objectives

For the problem with multi-objectives of unequal weights, weight for each objective should be expressed
in numerical values. Suppose that a manager considers the importance of the total tardiness and the number
of tardy jobs in the job shop scheduling are 50% and 100%, respectively (there is no necessity that the

total importance becomes 100%). Then, all the belief masses could be computed as follows.

b(SPT, high, BEST) * wn

b(EDD, high, BAD)+ b(SPT, high, BEST)+b(MDD, high, WORST)+
b(MOD, high, GOOD)+b(NDD, high, GOOD)

my(SPT) =

=4/2+4+1+3+3)*0.5=20/13
m(MOD)=3/2+4+1+3+3)*0.5=1.5/13
m(NDD) =3/(2+4+1+3+3)*0.5=1.5/13
m(®) =3/(2+4+1+3+3)*05=15/13

b(MDD, high, BEST)*w:

B(EDD, high, WORST)+b(SPT, high, GOOD)+b(MDD, high, BEST)
+b(MOD, high, GOOD)+b(NDD, high, WORST)

m:(MDD) =

4/(1+3+4+3+1)*1.0=4.0/12
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moSPT) =3/(1+3+4+3+1)*1.0=3.0/12
m(MOD) =3/(1+3+4+3+1)*1.0=3.0/12
m &) =2/(1+3+4+3+1)*1.0=2.0/12

Where, m:(@) and m,(6) are set by the value of the sum of all unassigned masses. From the recomputed

values, we can combine evidences as shown in following {Table 4).

(Table 4) Combining Evidences for the Problem of Unequally Weighted

mx({MDD}) ma({SPT}) mA{MOD}) mAO)
=4.0/12 =3.0/12 =3.0/12 =20/12
mi({SPT}) @ {SPT} @ {SPT}
4/13 8.0/156 6.0/156 6.0/156 4.0/156
m({MOD}) @ @ {MOD} {MOD}
3/13 6.0/156 4.5/156 4.5/156 3.0/156
m,({NDD}) @ @ @ {NDD}
3/13 6.0/156 4.5/156 4.5/156 3.0/156
mi(©) {MDD} {SPT} {MOD} @
=3/13 32.0/156 24.0/156 24.0/156 16.0/156
my o mA{SPTH =Zm({SPTY}) * m:({SPTY})
(6.0+ 24.0+4.0)/156=34.0/156
my 1 mo({MOD))=(4.5+24.0+ 3.0)/156 = 27.5/156
my Xt mo({MDD}) = 32.0/156
m1 1 mA{NDD}) = 3.0/156
my O maAO) =16.0/156
my o ma(U) =(34.0+27.5+32.0+ 3.0+ 16.0)/156=112.5/156

Where, m; & m,(Z)=XZ Zm,(X) - mi(Y) and U is the union of the sets resulting from combining two eviden-
g

ces due to two different objectives.

Since the resulting belief masses do not sum to one, normalization is required as follows.

m ot mA{SPT}) =34.0/1125
m, 11 mo({IMODY)=27.5/112.5
m1 X mo({MDD})=32.0/112.5
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my MZ({NDD})
m jo! me(@)

3.0/1125
16.0/112.5

From the above results, we can find that SPT rule is still the best, and MDD the second.

5. Conclusions

Since late 1950s, many researches have addressed resource-constrained scheduling problems from different
perspectives, and employed various heuristics and algorithms. Since most of the heuristics and algorithms
were developed for single objective problems, none of these solution methods would be appropriate if they
have multiple objectives.

Furthermore, in the real world problems that need to consider more constraints and have unquantifiable
scheduling knowledge, traditional analytic methods could only be very limitedly applied. Expert system or
‘ knowledge-based system can be considered as an alternative in many studies since they can utilize unquanti-
fiable scheduling knowledge which describes the complex scheduling situation such as multiple objectives,
multiple heuristics, and so on. ‘

In this paper we suggest that Dempster-Shafer Theory could be applied to acquiring knowledge on selecting
the most appropriate heuristic rule when a scheduling expert system is developed. In addition, we show
the applicability of DST by walking through the computational procedure of two examples: equally weighted
case and unequally weighted one. '

Even though DST might have the problem of combinatorial explosion, DST turned out be effective in
considering multiple objectives in scheduling because
O DST could easily manipulate propositional value such as ‘BEST’, ‘GOOD’, ‘BAD’, “WORST’, and even

‘Unknown’, which would be often the case of knowledge expressed by human experts,
O Computational procedure is simple and easy to understand, and
O DST is based on the theory of belief so that unavoidable inexact reasoning process could be supported

theoretically.
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