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Abstract

The long term behavior of the Waste Isolation Pilot Plant(WIPP), a nuclear waste repository cur-
rently under construction near Carlsbad at New Mexico, depends upon the fracture and deformation
behavior of bedded rock salt. Although many numerical analyses of the WIPP have been conducted,
to our knowledge none have included the ability to simultaneously predict the effects of fracture and
nonlinear deformation of the salt continuum., We are in the process of developing a finite element
program to simulate the effects of nonlinear fracture mechanics and nonlinear continuum behavior of

rock salt simultaneously.

1. INTRODUCTION the time-dependent closure of rock salt storage
rooms was expected eventually to encapsulate

Essential technology for storing nuclear was- the waste in an impermeable envelope of salt.
te products in salt formations is being devel- It is now known that the salt contains roughly
oped in the Waste Isolation Pilot Plant(WIP- 1 to 3% brine, and that there is therefore the
P) program. One of the reasons for choosing possibility that the waste metals will corrode

natural salt deposites as the host site was that
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as they contact the brine, causing as a by-prod
uct hydrogen gas. This gas, at the lithostatic
pressure of the repository, has the potential to
occupy a volume of roughly four times the orig-
inal volume of the waste barrels. Continuum
nonlinear finite element method (FEM) models
have indicated that gas pressures in the re-
pository may exceed the lithostatic pressure of
14.8 MPa by 10 MPa or more. The salt cannot
sustain high tensile stress, and therefore such
high gas pressures cannot in reality exist, This
high predicted pressure indicates the possi-
bility that a large gas-driven hydrofracture
will form. In fact, analytical calculations have
shown that, using the assumptions of linear
elastic fracture mechanics(LEFM), a horizon-
tal penny-shaped fracture five kilometers in
radius(with less than and mm maximum crack
opening) is possible. To better analyze and de-
sign the WIPP, it is necessary to have the cap
ability to predict fracture propagation in salt
rock.

LEFM is the classical theory of fracture
mechanics, introduced by Griffith? (Griffith
1920) and essentially completed by Irwin?,
LEFM has two basic assumptions : (1) The
continuum surrounding the crack is linear and
elastic(follows Hooke’s Law) :and (2) the
fracture process zone(FPZ) is confined to a
small regioncompared to other dimensions in
the problem. It is questionable whether the as-
sumptions of LEFM are applicable to a
gas-driven hydrofracture in salt because both
of the above assumptions may be violated.

Since the LEFM calculation almost certainly
over-predicts the crack length, it is reasonable
to model the gas-driven hydrofracture using
some form of nonlinear fracture mechanics
that takes into account the time-dependent rel-
axation of the salt continuum as well as the
possibly large FPZ at the tip of the crack. A

recent paper” has shown that, even if the con-
tinuum is linear elastic, the fracture toughness
of the crack pressurized by a viscous fluid far
beneath the ground surface may depend upon
crack length, and therefore violate the assum-
ptions of LEFM. It is with these motivating
ideas that we set out to develop a finite el-
ement capability to model combined smeared
and discrete mechanisms in rock salt,

2. FEM MODELING OF FRACTURE

There are two fundamental techniques for
modeling fracture using the FEM : the “dis-
crete crack” and the “smeared damage mech-
anics” approaches. In the discrete crack ap-
proach, first suggested in the early 1960’s?,
the propagation of a single crack is modeled by
changing the finite element mesh to represent
the new surfaces created by the crack. In this
approach, the crack is viewed as a geometrical
entity. In the approach, the crack is viewed as
a geometrical entity. In the smeared damage
mechanics approachS) the growth of a crack or
of a cracked region is represented by modify-
ing the constitutive relations in affected finite
elements. In the smeared damage mechanics
model, the crack is viewed as a material en-
tity.

The discrete crack approach requires, as a
part of the analysis algorithm, automatic rem-
eshing to accomodate crack propagation. In
the past, this task has been so daunting that
few have attempted to model automatic dis-
crete crack propagation. Nonetheless, using
modern software techniques, several success-
ful two-dimensional algorithms have been de-

veloped®#9

Automatic remeshing to model
crack propagation in three dimensions remains
an unsolved problem. To model situations wher-

e the FPZ is small compared to other problem
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Fig.1 The complete development of a fracture includes
(a) continuum damage
(b) line-localization of damage at a “cohesive crac-
K"
(c) development of a macro crack with damage
localized at a point

dimensions as in LEFM the discrete approach
is the only one that makes sense in terms of
solution efficiency. Currently, two-dimensional
discrete cracking implementations of LEFM
analysis are becoming more common, while
nonlinear fracture mechanics approaches using

the fictitious crack model(also named the co-
hesive crack model) to model Dugdale-Bar-
enblatt type cracks are beginning to appear in
the literature.

The smeared damage mechanics approach is
the only approach that makes sense when vol-
umetrically distributed damage(say, in the
form of stable micro crack growth) is to be
modeled. However, it has been shown that the
smeared damge mechanics approach fails to
produce objective results with respect to mesh
refinement when strain localization occurs'
Two principal schemes have been introduced
to force the smeared damge mechanics ap-
proach to produce objective results with re-
spect to mesh refinement : the “crack band
model”? and nonlocal damage mechanics®
The crack band model assumes that the FPZ
is long and narrow(which is not always the
case), and it fails when the element size bec-
omes large compared to the FPZ length. On
the other hand, the nonlocal damage models
require the FPZ to be modeled explicitly, whic
h is unreasonable when the FPZ becomes smal
1 compared to the size of the problem being
analyzed. We propose, therefore, to incorpor-
ate features of both the discrete and the
smeared damage mechanics models into a sin-
gle FEM code. Relatively few large cracks will
be modeled using the discrete crack approach
(including the cohesive crack model), while
volumetrically distributed mechanisms such as
damage due to micro cracking, creep, and plas-
ticity will be modeled using the smeared ap-
proach. An energy-based criterion will be de-
veloped, as described in the next section, to
handle the transition from volume-dominated
damage to surface-localized damage to
point-localized damage, as suggested by Fig.1.
To our knowledge, this approach has never be-
fore been suggested.
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3. ENERGY APPROACH TO MODELING OF NON-
LINEAR FRACTURE MECHANICS

The Griffith" criterion states that in a static
problem, for a crack to propagate, the energy
dissipated per unit crack propagation, Gy, must
be equal to the potential energy release rate,
G, which is the potential energy lost by the
surrounding continuum per unit crack propa-
gation :

Gi=G (1

In LEFM, G may be calculated from the stress
intensity factors that characterize the stress
field near the crack tip, and Gy is assumed to
be a material constant, (It can in fact be prov-
en that G; must be a material constant.)

If we now make no assumptions about the
constitutive relations that describe the beh-
avior of the surrounding continuum, and also
allow for a cohesive zone with nonlinear trac-
tion-displacement relations behind the crack
tip, we can again state that the criterion for
crack propagation is that the energy dissi-
pation rate associated with the crack tip, Gip,
plus the energy dissipation rate associated
with the cohesive zone, Geoesive, PlUS the energy
dissipation rate associated with the surround-
ing continuum, Gyoume, must be equal to the

rate of loss of potential energy in the problem

Gtip + Geohesive + Gyoume = G, (2)
or
Gtip =G — Gcohesive - Gvolume (3)

All of the terms in Eq.(3) can be calculated
using standard finite element techniques ex-
cept Gyp. This energy dissipation rate must be

interpreted to be all that energy dissipated by

the crack that is not explicitly accounted for

by dissipation in the surrounding continuum, C
wlume, OF 1n the cohesive zone behind the crack
tip, Geohesion.

Now assume that the crack tip will propa-
gate when Gy, reaches a critical value, Gip(crit),
regardless of far-field conditions. There is a
way to determine Gupait). We can solve the
problem of a steady-state crack in an infinite
medium, The energy dissipated by such a crac-
k is the material property, G;, which can be

measured experimentally’® or calculated. Gy is

the sum of the energy dissipation rates :

Gf = Gtip(crit) + Gcohesion + Gvolume (4)

and therefore

Gtip(crit) = Gt — Goohesion — Grvolume (5)

Guipierity 18 therefore interpreted as that por-
tion of the energy dissipation rate associated
with the crack tip that is not explicitly accoun-
ted for in the FEM model. Note that if no en-
ergy dissipation is included in the FEM model,
then Gupity=Gs, and the problem reduces to a
generalization of LEFM(with the difference
being that the medium surrounding the crack
may be nonlinear elastic).

The assumption that Gipary IS a material
property is similar the assertion that G; is a
material property. We have essentially general-
ized our concept of fracture mechanics to in-
clude any level of explicit FPZ modeling, with
the remainder of the energy dissipation rate
assumed to be constant. Gjpcriyy assumes the
value of zero if the FPZ is modeled com-
pletely, and assumes the value of Gy if the
FPZ is not modeled at all.
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To use this approach effectively, it is neces-
sary to choose the constitutive relations for
the volume (stress-strain relations) and for the
cohesive zone(traction-displacement relations)
wisely, as indicated by the constitutive rela-
tions in Fig.1l. Because the volumetrically
smeared stress-strain constitutive models re-
quire special treatment only after achieving a
zero eigenvalue(or a zero tangent stiffness), it
makes sense to disallow negative eigenvalues
in the stress-strain model. When the stress-
strain relation develops a zero eigenvalue, then
subsequently a cohesive crack is inserted at
that location. Subsequent softening of the ma-
terial is modeled by the cohesive crack model
through an appropriate traction versus crack
displacement constitutive relation,

At a given stage of crack development, in
addition to determining whether a crack will
propagate, it is necessary to determine in what

15)

direction it will propagate. Gerstle™, to pre-

dict the direction of crack growth.
4. FEM IMPLEMENTATION

For several reasons it seems convenient to
use linear triangular and bilinear quadrilateral
elements to model combined smeared and dis-
crete cracking. First, most nonlinear finite el-
ement codes are limited to simple linear and
bilinear elements to avoid some of the spurious
behaviors that may develop in higher order
elements. Second, the automatic remeshing
scheme to accommodate crack propagation is
somewhat simpler for simple element types.
Cohesive cracks may be modeled by linear dis-
placement field interface elements'®. We con-
sider only infinitesimal displacements(small
strains) currently, although in principle large
displacements could be modeled as well. If lar-
ge displacements were modeled, it would make

more sense to use slide lines than interface
elements to model the cohesive crack.

As explained in the previous section, under
the proposed crack propagation criteria, it is
necessary to determine the rates of energy dis-
sipation with respect to crack length of both
the continuum(Gyoume) and the cohesive crack
(Goohesion). as well as the rate of change of po-
tential energy(G).

The nonlinear finite element analysis capa-
bility must include continuum elements as well
as interface elements. Gerstle et al have de-
veloped a nonlinear analysis code called
NDFE(Nonlinear Dynamic Finite Element)?.
NDFE has an explicit dynamic relaxation sol-
ver, a linear material model, and several sim-
ple nonlinear material models. Currently, no
continuum model especially designed to model
rock salt has been included, but we intend to
add a salt model as soon as our testing, using
simpler material models(linear elastic and local
damage), is complete(See Fig.1(a)). NDFE
also has a simple cohesive traction versus dis-
placement model, as shown in Fig.1(b).

The solution procedure for static nonlinear
crack propagation is as follows. In each time
step, with the crack length held constant, iter-
ation to an equilibrium solution is achieved.
The dissipated energies Eume(a) and Echesion(2
and the potential energy E(a) are calculated
by NDFE. Following this the crack length is
incremented(by dragging the crack tip node)
by a small amount, Aa. calculated to obtain E
voume (2 +Aa) and Ecpeson(a+Aa) and the poten
tial energy E(a+Aa) at the incremented crack
length, The energy release and dissipation rat-
es are then approximated by the finite differ-
ences :

_ E(at+Aa)—E(a)
G Ad (6)
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E conesion (a+Aa) — Bohesion (a)

Geohesion = Aa ( 7)
Ev +Aa) —
Crotme = lume(a Aaa) Eolume(a) (8)

Then Eq.(3) is employed to calculated Gup.

If Gyp is greater than or equal to Guip(crity assum-

ed a material constant, then the crack is incre-
mented by the length of one finite element,
using the automatic crack propagation rem-
eshing program. The direction of crack propa-
gation is calculated from the maximum circum-
ferential tensile stress criterion”. Then the
time is incremented and the process is re-
peated.

This approach can also be extended to ac-
commodate dynamic crack propagation if the
kinetic energy is included appropriately in the
energy rate balance expressed by Eq.(2).

5. SIMPLIFIED REMESHING SCHEME

When a discrete crack propagates, the finite
element mesh must be altered to model the
geometrical change. We now consider only
two-dimensional meshes ; automatic remeshing
to accommodate crack propagation in
three-dimensional problems is a much more
complex problem, still to be solved. The crack
propagation is an incremental process and at
each step we make the assumption that the
crack propagates across the next finite el-
ement in the path of the advancing crack. The
crack remeshing algorithm consists in identif-
ying all possible cases that can occur when a
crack propagates in a FEM mesh with
three-and four-noded elements and four-noded
interface elements. Once identified, these cas-
es can be programmed to make the crack prop-
agation remeshing automatic. With a well-des-
igned computational mechanics data base man-

agement system'®, this programming is easily
accomplished. There are a limited number of
cases(approximately 10) that need to be con-
sidered. Fig. 2 shows two of these cases : NSN
and NE(4)S. Other cases, not shown, are
NEN, NE(3)S, and DN(drag node). Fig.3 show-
s a mesh with a curved crack that has prop-
agated through it using the algorithm. More
detail on the remeshing algorithm is given in'®,

For three-dimensional problems the remesh-

\ old side
E \
(Eiement) \\ )
new side

t

N(Node) S(Side) oldnode

(a)

new node

g S
e 27

L

(b) (¢c)

Fig.2 Schematic showing two cases in the automatic crack
propagation remeshing algorithm. (@) symbols and
abbreviations (b) case NSN : crack propagates from
a node through a side to a node (c) case NE(4)S :
crack propagates from a node through a four-noded
element to a side.

Fig.3 Mesh resuiting from a curved crack propagating
through a FEM mesh(6 propagation increments : de-
formed mesh shown).
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ing to accommodate discrete crack propa-
gation is much more complex, We believe that
it might be easier to update the entire geo-
metrical description of the algorithm to rem-
esh the entire problem, rather than to attempt
to modify the mesh locally, as we have done in
the two-dimensional case,

6. CONVERGENCE CONSIDERATIONS

The FEM is an approximate method, and to
be used effectively, the analyst must be aware
of the accuracy of the analysis results. We
have investigated the accuracy with which Gup
is calculated for meshes with varying degrees
of concentrated upon the case of linear ma-
terial behavior with Gyoume and Geonesion being
null, which is the case of LEFM. Because of
the extreme stress gradients in the LFEM
problem, this case probably provides the most
severe test of the ability of a FEM mesh to
accurately predict Gy, We have found that,
using regular meshes of three-noded and
four-noded elements, Gy, converges to the cor-
rect solution with added mesh refinement,
even without the use of singularity elements.
Furthermore, the accuracy of Gy, is relatively
unaffected by poorly shaped elements near the
crack tip. Our convergence studies have show-
n that for meshes with all elements approx-
imately the same size, b, the accuracy of the
Gtip solution depends upon the ratio of element
size, b, to least dimension, LD, associated with
the crack tip'”. For b /LD=1, the solution er-
ror in Gy, is approximately 50%. For b /LD=
20, the solution error drops to approximately
10%.

We have also done convergence studies for
problems in which Geopesion 1S nON zero(interface
elements model a cohesive crack as part of the
FPZ energy dissipation). In the problems that

we investigated, convergence was achieved
with relatively coarse meshes(1025 error with
meshes having b /LD=0.5).

7. EXAMPLE PROBLEM

To test the method, we have used as an
example the plain concrete three-point bend
beam tested by Petersson?”’. The relevant prop-
erties of that beam are : depth=0.2m, length
=2m, thickness==0.05m, tensile strength=3,
33MPa, G=137N/m, and Young’s modulus=
30,000MPa,

m
1
1
|
i
il

Force(N)

° 200 400 0 L

Displacement (mm)

Fig.4 FEM analysis of a three-point beam in bending show-
s that very coarse meshes are effective in predicting
the correct load-dispiacement curve. Mesh (a) 30
eilements, Mesh (b) 54 elements, Mesh (c) 185 ele-
ments.
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Fig.4 shows three different meshes used to
analyze the beam, the load versus load point
displacement curves calculated from the three
meshes, and the experimental result. In the
FEM analyses, we have assumed that Guoume=
0, Geohesion—=Gt and Griperit) =0.

It is clear from Fig.4 that all three meshes
produced essentially the same load versus dis-
placement curves, andthat they were all close
to the experimental result. The energy ab-
sorbed by the beam is given by the area under
the load-displacement curve. It is seen that
these areas are all approximately the same,
and therefore, from a global energy point of
view, the method appears to give reasonable
results.

In conclusion, a nonlinear, fracture sensitive
problem has been solved using a mesh with
only 30 linear and bilinear finite elements(73
degrees of freedom), and satisfactory results
have been achieved.

8. CONCLUSIONS

The deformation and fracture of salt invol-
ves both smeared and discrete cracking mec-
hanisms. To successfully model the behavior
of gas-driven hydrofracture at WIPP using
FEM, it is necessary to develop a method by
which smeared mechanisms and discrete crac-
king can be modeled simultaneously. We have
developed an energy-based approach that com-
bines fracture mechanics and smeared damage
mechanics in a consistent manner.

The essence of our approach is to allow mod-
eling to any degree desired of nonlinear, inelas-
tic behavior of the continuum, However, we
preclude the development of negative eigenval-
ues(negative tangent stiffness) in the con-
tinuum constitutive relation, Instead, we intro-
duce a discrete crack into the continuum if a

zero eigenvalue develops. The discrete crack
may be modeled as a cohesive crack or as a
cohesionless crack.

The essence of the approach is to calculate
that portion of the energy dissipation rate as-
sociated with the crack tip, Gy, that is not
modeled explicitly by the constitutive relations
in the FEM model. Then, to determine if the
crack will propagate, we compare Gyp to a crit-
ical value, Guip(erit), that can be calculated by
considering propagation of a steady-state crac-
k in an infinite continuum.

The approach essentially expands the Griffit-
h! energy balance concept to include fracture
in inelastic media, the Dugdale-Barenblatt con-
cept, and LEFM in one coherent theory.

We have also presented some aspects the
FEM implementation, including the calculation
of energy dissipation rates, remeshing to ac-
commodate crack propagation, and conver-
gence considerations,

Finally, we have presented an example prob-
lem of Mode I fracture of a concrete beam, in-
cluding a cohesive crack model.

The goal of FEM modeling of gas-driven
hydrofracture in inelastic salt media now ap-
pears to be within our grasp. We are in the
process of writing a code for this, and other,
purposes.
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