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Application of Gradient Projection Algorithm for the Design
of Steel Frames
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Abstract

The General conceptual constitution of structural optimization is formulated and the algorithm using

the gradient projection method and design sensitivity analysis

is discussed. Examples of

minimum-weight design for six-story steel plane frame are taken to illustrate the applicability of this
algorithm. The advantages of this algorithm such as marginal cost and design sensitivity analysis as

well as system analysis are explained.

1. INTRODUCTION

The economics regarding the structural de-
sign may not be parameterized by a single
variable. Some of the most important factors
seem to be the structural volume or weight,
construction labor cost, maintenance and re-
pair expenses throughout the life of the build-

ing, etc. However these factors have different
effect on the total cost of construction and
maintenance of building structures from region
to region and from time to time. For example,
In some countries, the labor cost is much more
important than in other countries where the
material cost is generally the higher one.
Therefore, if designers are concerned with the
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real cost of construction and maintenance of
building structures, it is very difficult to
visualize or quantify these economic para-
meters in a simple way.

Nevertheless, it is commonly accepted by
structural designers that minimization of struc-
tural weight or structural material volume is of
the utmost importance in economic parameters
because the weight or volume of structure
appears to be roughly proportional to the ma-
terial and construction labor cost regardless of
time and place of construction,

Therefore, in this structural optimization
program, the objective of design is assumed to
be only the minimization of weight or volume
of structure while all the others are included in
the design constraints,

2. FORMULATION OF MATHEMATICAL MODEL"

2.1 Design Variable and State Variable

The behavior of most engineering system is
governed by some law of physics. This
behavior is described analytically by a set of
variables called state variables, For structural
systems, state variables may include displa-
cements and stresses at certain points,
eigenvectors, eigenvalues etc. let zE€R" be a
state variable vector representing displace-
ments at key points of structuree, and let
yeR" and { represent an eigenvector and
eigenvalue, respectively.

There is second set of variables called de-
sign variables that describes the system. Let
beR" represent a vector of design variables
which mean the moment of inertia in the case
of moment-resisting steel structures.

2 9 Relationship Between Design Variable
and Associated Section Properties
The member sections are classified as three

types, economic beam section, W14 series
colum section and W12 series column section.
the different equations corresponding to ditfer-
ent types of sections have been set up by least
square curve fitting. the range of interest in
the design variable, the moment inertia, [ is
assumed to be 100 to 4000 in!, which

corresponds to the member sizes of

mediumrise structures.?
The equations representing the fitted curves
are as follows :

Economic beam series :

A = 0.493 1*#®
S = 0.589 178 (2.12)

W14 column series :

A = 0.0693 I*®!
S = 0.262 1% (2.10)

W12 column series :

A = 0.103 1%
S = 0.375 19 (2.1c)

where A and s mean section area and elastic
section modulus, respectively.

The shape factor between plastic section
modulus, Z, and elastic section modulus, S, is
assumed to be 1.15.

2 3 General Mathematical Model

Now a general mathematical model for opti-
mum design of structural system is determined
as follows :

Definition 1

Find a design variable vector bER" that
minimizes objective function

$(b, z, ) (2.2)

and satisfies the equillibrium equations and de-
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sign constraints which can be expressed in a
simplified form as shown in eq(2.3)

#4(b, z, {) <0, i=1,2 -, m, (2.3)

Definition 2(Constraint set)

A set of points that satisfies all the
constraints of problem of Definition 1, is called
a constraint set. It is defined as

D={beR* : k(b)z=f, K(b)y
={M(b)y, (b, z, ¢{) <0,
i=1, 2, -, m} (2.4)

Since all the constraints equations are con-
tinuous with respect to b, the set D of eq(2.4)
is closed. It is assumed that D is bounded and
hence compact, It is further assumed that the
objective function of (2.2) is continuous on D.
Therefore, the mathematical model for opti-
mum structural design of Definition 1 has an
absolute minimum in D,

2.4 Design Sensitivity Analysis

A major step in any direct method of
nonlinear programming is to calculate
gradients of the objective and constraint func-
tion with respect to design variables at the
current design point,

A first variation of the function #i(b, z, ¢)
gives

S6= ﬁ‘ab+ ¢6z+ a"é‘ac (2.5)

where all the derivatives are calculated at the
given values of b and the computed values for
z and {. The object of design sensitivity analy-
sis is to express the terms with oz and J{ as
functions of b : Thus the first variation of eq
(2.5) is written as

o= (H)Tob i=0,1, -, m (2.6)

where /is then gradient for the function &
with respect to design variables at current de-
sign point,

In order to eliminate 9z from eq(2.5), one
writes a first variation of the state equation
and obtains dz as

iz = —K

LK(b)z—flsb (27)

Also to eliminate 8¢ from eq(2.5), one writes
a first variation of the eigenvalue problem and
after algebraic manipulation obtains a well-es-
tablished formula for a¢ :

8¢ = IT5h (2.8)

where #* is the design dervative vector for the
eigenvalue { ginen in eq(2.9) with y™(b)
y=1.

=5y (b)y—{y™M(b)y T" (2.9)

Substituting for éz and 6{ from eqs(2.7)
and(2.9) into eq(2.5) and comaring the result
with eq(2.6), one obtains

e [5¢ 6¢1

1

l"a?-{K(b)Z f}

+‘3—?1‘TJT (2.10)

calculation of K™ in eq(2.10) can be avoided
by an algebraic manipulation, Define a vector
q as follows,

i og; . .
[qusa_‘zK 'i=0,1,2 -, m (2.11)

Then, the gradient vector 7 in eq(2.10)
becomes

{= [(‘3"")T Fb—{K(b)z f}q+l‘ ] (2.12)

Now postmultiplying eq(2.11) by K and taking
the transpose of the resulting equation, one
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obtains ¢ as a solution of the equation

Kq = [%‘Z—i]T (2.13)

Eq(2.13) is called an adjoint equation, and q’ is
called an adjoint vector. Note that the adjoint
equation(2.13) has the same cofficient matrix
as the original state equation.

Thus the previous decomposition of K can be

used to solve for d.

2 5 Determination of Search Direction and
Step Size.

With the assumtion of initial design point b’
being within constraint set, the reduced opti-
mum design problem for b is now defined as
follows :

Find b that minimizes a first order change
in the objective function

oy = I'Tob (2.14)

and satisfies the linearized design constraints

F+of<o i=1,2 -, p (215

and a step size constraint

sbT Web< (2.16)

Here W is a positive weighting matrix
(usually diagonal) and is assumed to be ident-
ity matrix I. {>0 is a small number, a tilde ( )
over a function indicates an e-active con-
straint (that is @i+e=0, where >0 is small
number.), and p is the number of e-active
constraints. This ¢ is introduced in checking
various constraints so that if the current de-
sign point is arbitrarily close to a constraint
surface, then that constraint is treated as an
active constraint.

After using Kuhn-Tucker necessary con-

dition and doing some mathematical

manipulations, the design change is experssed

sb = —(F5)ob' + o’ (2.17)
SHl=W P41, Y, sbi=—W'L,",
M;=—L W, M =4,
M=L"TWL. L=[7]
The step size 7217 in eq(2.17) is always larger
or equal to 0. And it is reasonable to select the
1
step size oy directly.

Let the convergence parameter {, be defined

as follows :
I 16bM I
= 2.18)
= TwWRL (

It can be easily shown that for all optimum de-
sign problem, {, lies between 0 and 1.
If (=0, the relative optimum point is

attained.

3. SENSITIVITY ANALYSIS AND SHADOW VALUE
OF DESIGN CONSTRAINT

The geometry, load conditions and design
variables are shown in Fig. 1 and the imposed
constraints are as follows :

(1) Moment : f,<0.66F(compact section)

(2) Deflection : Interstory drift index<0.

0025

(3) Soft story failure load factor A5 >1.14pc.

At every step of the optimization procedure,
the program calculates the amount of
violations for all the imposed design
constraints. The optimization algorithm needs
the design sensitivity analysis of each active
constraint to implement the gradient projec-
tion method. Sometimes it is desirable to have
a quantitative intuition about how much influ-
ence on a certain active constraint the in-
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Fig. 1. Geometry, load conditions and Design Variables

crease of each design variable by one unit can
have, This can be done by calculating the de-
sign sensitivity vector, each component of
which represents the contribution of the corre-
sponding design variable,

Therefore whenever designers inspect the
components of the design sensitivity vector
corresponding to a certain violated constraint,
they can find the relative contribution of each
design variable to remedy that violated con-
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(a) T,<1.0 second (b) T;<1.1 second

Fig. 2. Two Optimum Designs

straint. Two examples of minimum-weight de-

sign with different upperbounds on the

fundmental period of structure are shown in
Fig. 2. The active constraints and correspond-
ing shadow values are listed in Table 1 while
the definition of design variables and related
plastic mechanisms are shown in Fig. 1 and 3,

respectively. For example, two active
)
/
{ i 4
Ay A Ay
%
‘
{ Z i
' g Ag= A

Fig. 3. Related Piastic Mechnisms
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Table 1. Active constrains of Two Optimum Designs(Fig. 2)

Table 2. Two Design Sensitivity Vectors

constraint shadow value(in?)
type content design A design B
(Te=1.0s) | (Tr=1.1s)
period |T,<T# 99255 81905
1 e <A 35124 29797
Lldpe. Sk 2202
mechanism*|1.14pc. <13 36306 20938
L1llpe <A 21079 3764
(B)* 1.1 <5 276800 290750
oment™™ M1 <0.66F,S=Mailow 25081 30351
(A)*™ M2<0.66FyS 24310 28040
As< Ay 118
column™* | As<As 9373 15241
kfysA.t 5116 7687

* See Fig. 3. for definition of 1’s and corresponding
plastic mechanisms,
** Constraints (A) and (B) are used for illustration in
Table 3.
sokk Each subscript denotes the design variable in Fig,
1.(H)

constraints in Table 1 are taken for illus-
tration. One is My, < Maw and the other is 1.
14pc <4. The corresponding normalized con-

straint functions are defined as follows :

M
fr=—2-1<0
allow
1.1
gp=—"—-1<0
As

Considering that the design sensitivity vector
is defined as

08 __L_i 06 1T
5 ]T[ by’ ’abk]

where k denotes the number of design
variables, the data as shown in Table 2 reveals
that the increase of design variable 12 by one
unit causes the decrease of g by the amount
of 126x107% while the other design variables
have almost no influence on the change of that
constraint function, to compensate the viol-
ation of this constraint, the increase of design

* See figure 1.(f) for definition of design variables.

variable, 12 is the most effective and
ecnomical, Also, for the second constraint
function ¢g, the increase of design variables, 11
and 12, will give the most predominant com-
pensation of the violation of constraint func-
tion ¢@s.

Whereas the design sensitivity vector shows
the relative influences of design variables for
the remedy of violated constraints, the shadow
value of a certain active constraint function is
released by the unit value. Of cource, this
shadow value is an approximate estimate be-
cause the nonlinear optimization model is
linearized in the local region and then this
linearized moel is solved using the gradient
projection method.

However, when designers investigate all the
shadow values of active constraints, then can
immediately acknowledge the relative influ-
ence of each active constraint on the reduction
of the total weight of the structure. This
implies that designers can have a clear idea on
the cost and benefit resulting from the impo-
sition of certain specific design constraint,

A most detailed explanation is given by
using the examples of Table 3 regarding the
significance of shadow values. It is interesting
to note that the shadow value or price corre-
sponding to the constraint 1.14,c <45 is about
three times as large as the next largest:
shadow value. When the constraints, 1.14,c <4
and 1.12,c <4 are released by 5% or 10% in
the normalized constraint functions, the actual
reductions and those expected by shadow
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values in structural volume are compared in
Table 3. From Table 1 and 3, designers can
clearly note that the contribution of design in-
put 1.14,c <5 to the increase or decrease of
total structural volume is much larger than
those of design input 114, <4y

Table 3. Reduction of Strucutural Volume by Release
of Constraints

n3
normalized volume of strgcture(m )
[reduction ]
constraint actual expected by
shadow value
1A
1—1"‘ ~1<0 185670 185670
5
L4,
— ~1=0.05 177330(8340] | 171132[14537]
5
114,
— —1<0.1 167520181501 | 156595[29075]
5

(a) Release of constraint 1.14, . </;
(shadow value=290750in?)

in3
normalized volume of sterlcture(m )
[reduction ]
constraint actual expected by
shadow value
14
11—"1 -1<0 185670 185670
A
1.14,,
— - —1<0.1 184630[1040] 182690{2980]
1

(b) Release of constraint 1.14,. <4,
(shadow value=29797in3)

4. SYSTEM ANALYSIS

Structures whose span lengths are varied as
shown in Fig. 4 have been designed by using
program OPTIMUM. The applied design
constraints are as follows :

(i) Moment should be less than or equal to
yield moment for all members.

(ii) Interstory drift should be less than or
0.015h,

equal to C.

where h, means the corre-

sponding story height and Cq is 5.5 in case of
steel frame.

(iii) Axial force should be less than or equal
to 40% or 60% of yield strength.

The result of optimization are given in F ig.
5. From Fig. 5, the most economic system is
shown to be system 2. The reduction of
sutructural volume is about 10 to 20% of its
own weight when compared with other
systems.

pspmey pemesen e e

5
-
E_
(a) System 1 (b) System 2 (c) System 3
Fig. 4. Different Geometry for System Analysis
2
E: 3
1380 1483

135590 im (p<oiy
126410 i (P<0.6F,)
(¢) System 3

136390 114640 ird

(a) System 1 (b) System 2

Fig. 5. Moments of Inertia from Structural Optimization(in,)

From the minimum-weight design of system
3, it can be found that the girders with longer
span are almost of the same size throughout
the stories. But all the girders and columns
which constitute the smaller bay are very stiff
at the lower stories and the stiffness decreases
as the higher stories goes up. This offers the
hindsight that in order to control the lateral
drift efficiently, it is more economical to
strengthen the bay of the smaller span than
that of longer span while the girders with the
longer span mainly resist the gravity loads.
This result clearly proves the economic ef-
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ficiency for adding shear wall or bracing(dual
system) from the optimization point of view.
However, if the span length becomes large,
the design constraints on the axial force can
be the controlling design input as in the case
of system 3. To reduce the effect of axial
force on the plastic moment and the risk of in-
stability, ATC 3 recommends that axial force,
P, should be less than 60% of yield strength
P,. But the design shown in Fig. 4(c) is based
on constraint P<0.4P;. When the structural
volume for P<0.4P, and that for P<0.6P, are
compared (135590 cubic inch versus 126410 cu-
bic inch), the influence of the design con-
straint on axial force can be clearly recognized

in the case of a long-span structure.
5. CONCLUSION

The design approach using this sturctural
optimization program is basically different
from that of a trial-and-error method. Even if
the program OPTIMUM starts with arbitrary
initial design variables, it strictly follows the
direct search method which will eventually get

—106—

the minimum-weight design. The real advan-
tage of optimization is that it demonstrates
what the best design is and why. Meanwhile,
the trial-and error design procedure does not
show designers clearly why a design is the
best, instead giving a procedure which leads to
a satisfactory decision of member sizes. When
calling a design optimum, one can at least ex-
plain why it is the best for all possible choices,
and how much cost it saves conpared with
other systems and what design input has the
largest influence, etc., The design reached by
using the proposed procedure clearly reveals
this advantage of optimization,
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