Photoperiodic Floral Induction in Pharbitis Cotyledons Affected by Polyamines and Ethylene

  • Published : 1995.09.01

Abstract

Exogenous putrescine of 0.5 mM or higher concentratons applied during a 16 h inductive dark period could elevate putrescine content in cotyledons of Pharbitis nil Choisy cv. Violet, a short-day plant, resulting in complete blocking of photoperiodic floral induction. Titers of putrescine, spermidine and spermine in the cotyledons were traced throughout a 16 h dark period. While non-induced cotyledons under continous light slightly increased levels of polyamines, induced tissue maintaiend its putrescine, spermidine and spermine levels as low as 66.4%, 60.9% and 84.9% of non-induced levels respecitvely. Endogenous polyamines kept at lower levels in the inductive dark period were found to upsurge by a night break treatment of 10 min light in the middle of the dark and consequently the inductive dark effect was canceled. Elevation of polyamine titers could also be induced by 100 $\mu$L/L ethylene treatment which completely suppressed floral induction. Compared to untreated cotyledons, ehtylene-treated tissues increased putrescine content by as much as 136.5% in 12 h and spermidine level by up to 130.1% in 8 h. Ethylene-treated cotyledons not only increased endogenous polyamine content but also liberate ethylene in the second half of the inductive dark period accumulating up to three to fourfold level supporting a hypothesis that ethylene-treated tissues are stimulated to produce ethylene which in turn accelerates polyamine biosynthesis in the tissues. It is postulated that substantially low polyamine titers in the inductive dark period would be one of the necessary factors controlling photoperiodic induction of flowering in Pharbitis nil and the inhibitory effects of night break and exogenous ethylene treatment may be atributed to their action to stimulate endogenous polyamine production.

Keywords