Run-up and Evolution of Solitary Waves on Steep Slopes

급경사에서 고립파의 처오름과 진행과정

  • 조용식 (한양대학교 공과대학 토목공학과)
  • Published : 1995.12.01

Abstract

The run-up and the evolution of solitary waves on steep beaches are investigated by using a two-dimensional boundary integral equation model. The model is first used to compute the run-up heights of solitary waves on a relatively mind slope. The model is verified by comparing the computed numerical solutions with available experimental data, other numerical solutions and approximated analytical solutions. The agreement between the present numerical solutions and the other data is found to be excellent. The model is then applied to the calculation of run-up heights on very steep slopes. As far as the maximum run-up of solitary waves is concerned, the boundary integral equation model provides reasonable and reliable solutions. Finally, the evolution on steep beaches is also examined and the obtained wave heights are compared with those calculated from the Green's law.

본 논문에서는 2차원 경계요소법 수치모형을 이용하여 급경사에서 고립파의 처오름과 진행과정을 연구하였다. 먼저 수치모형을 상대적으로 완만한 경사에 적용하여 처오름 높이를 산정하여 기존의 수리모형실험의 결과, 수치해 및 해석해 등과 비교하여 수치모형의 정확도를 검증하였다. 경계요소법에 의한 수치해는 전체적으로 기존의 자료 등과 잘 일치하였다. 다음에 수치모형을 급경사 지형에 적용하여 처오름 높이를 산정한다. 경계요소법은 완경사 뿐만 아니라 급경사에서도 고립파의 최대 처오름 높이 산정에 매우 효율적이며, 경계요소법에 의한 결과는 인공수로의 제방 또는 방파제의 설계에 이용될 수 있을 것이다. 마지막으로, 급경사에서의 고립파의 파고를 계산하여 Green의 법칙에 의한 결과와 비교하였다.

Keywords

References

  1. Proc. of Int. Sym.:Waves-Physical and Numerical Modelling Tsunami runup on a conical island Briggs,M.J.;Synolakis,C.E.;Harkins,G.S.
  2. Rep. No. KH-R-38, W.M.Keck Laboratory of Hydrodynamics and water Resources Tsunamis-the propagation of long waves onto a shelf Goring,D.G.
  3. Technical Memorandum 33 Laboratory investigation of of the vertical rise of solitary waves on impermeable slopes Hall,J.V.;Watts,J.W.
  4. Handbook of coastal and ocean engineering Wave run-up and overtopping Herbich,J.B.;J.B.Herbich(ed.)
  5. Coastal Engineering v.7 Boundary integral equation solutions for solitary wave generation, propagation and runup Kim,S.K.;Liu,P.L.F.;Liggett,J.A.
  6. Boundary integral equation method for porous media flow Liggett,J.A.;Liu,P.L.F.
  7. Journal of waterway, Port, Coastal, and Ocean Engineering v.120 no.6 Integral equation model for wave propagation with bottom frictions Liu,P.L.F.;Cho,Y.S.
  8. Journal of Fluid Mechanics v.162 Radiation of solitons by slender bodies advancing in a shallow water Mei,C.C.
  9. Ann. Rev. of Fluid Mechanics v.12 Solitary waves Miles,J.W.
  10. Journal of Fluid Mechanics v.135 Run-up of solitary waves Pedersen,G.;Gjevik,B.
  11. Journal of Fluid Mechanics v.185 The runup of solitary waves Synolakis,C.E.
  12. Physics of Fluids A v.3 Green's law and the evolution of solitary waves Synolakis,C.E.
  13. Proceedings of Royal Society, London, Series A v.445 The run-up of N-waves on sloping beaches Tadepalli,S.;Synolakis,C.E.
  14. Coastal Engineering v.15 The run-up of nonbreaking and breaking solitary waves Zelt,J.A.