Dehydration Separation Characteristics of Water/organic Solvent Mixture Systems Using CMC/PVA Blended Membrane by Pervaporation Technique

투과증발법에 의한 CMC/PVA 블렌드막을 이용한 물/유기용제 혼합계의 탈수분리특성

  • Published : 1995.10.01

Abstract

The purpose of this study was to develop new membranes which have high selectivity and acceptable permeation rates for separating the organic solvent-water mixture systems, and also to investigate the permeation and separation characteristics of aqueous organic solutions through selected hydrophilic polymer membrane, namely, carboxymethyl ceuulose(CMC)poly(vinyl alcohol)(PVA) blended membrane. The optimum pewaporation result was obtained from CMC and PVA blended in the weight ratio of 7.5 CMC and 2.7 PVA which have high separation factors and permeation rates for the separation of alcohol-water mixture systems at 4$0^{\circ}C$. Especially, the blended membrane exhibited a separation factor o=8,989 with a flux off 214 kg/m2/hr far an aqueous 85wt% ethanol at 5$0^{\circ}C$ and the activation energies for pewaporation were 55.14 and 34.41 wt/mole for the 65 and 85wt% ethanol concentrations, respectively. The separation characteristics of the blended membrane were very steady at experimental temperature range. In the region of high organic solvent contentive approximately 80~90), the membrane exhibited a maximum PSI because of a large increase of separation factor.

Keywords

References

  1. J. Am. Chem. Soc. v.39 P.A.Kober
  2. Ind. Eng. Chem. v.53 R.C.Binning;R.J.Lee;J.F.Jennings;E.C.Martin
  3. J. Appl. Poly. Sci. v.12 R.Y.M.Huang;V.J.C.Lin
  4. J. Memb. Sci. v.10 K.C.Hoover;S.T.Hwang
  5. J. Memb. Sci. v.17 P.Schissel;R.A.Orth
  6. J. Memb. Sci. v.35 H.J.C. te Hennepe;D.Bargeman;M.H.V.Mulder;C.A.Smolders
  7. J. Memb. Sci. v.95 T.Sano;H.Yanagishita;Y.Kiyozumi;F.Mizukami;K.Haraya
  8. J. Polym. Sci. v.22 M.Yoshikawa;H.Yokoi;K.Sanui;N.Ogata
  9. J. Appl. Polym. Sci. v.14 R.Y.M.Huang;N.R.Jarvis
  10. J. Appl. Polym. Sci. v.35 R.Y.M.Huang;A.Moreira;R.Notarfonzo;Y.F.Xu
  11. J. Polym. Sci. v.24 M.Yoshikawa;T.Yukoshi;K.Sanui;N.Ogata
  12. J. Memb. Sci. v.85 F.Sun;E.Ruckenstein
  13. J. Memb. Sci. v.32 C.E.Reineke;J.A.Jagodzinski;K.R.Denslow
  14. J. Memb. Sci. v.66 E.Ruckenstein;H.H.Chen
  15. J. Memb. Sci. v.43 R.Y.M.Huang;Y.F.Xu
  16. J. Appl. Polym. Sci. v.36 T.Hirotsu;S.Nakajima
  17. J. Appl. Polym. Sci. v.36 T.Hirotsu;K.Ishimura;K.Mizoguchi;E.Nakamura
  18. J. Memb. Sci. v.90 L.G.Wu;C.L.Zhn;M.Liu
  19. J. Memb. Sci. v.71 R.Y.M.Huang;J.W.Rhim
  20. J. Memb. Sci. v.90 H.C.Park;R.M.Meertens;M.H.V.Mulder;C.A.Smolders
  21. J. Korean Fiber Soc. v.30 Y.K.Hong;K.S.Bae;J.M.Lee
  22. Prevaporation Membrane Separation Processes(1st Ed.) R.Y.M.Huang
  23. Polyvinyl-alcohol v.3 長野浩一