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SUPPLEMENTARY ANALYSES OF ECONOMIC X CHART MODEL"

Tae Bo Jeon*

ABSTRACT

With the increasing interest of reducing process variation, statistical process control has
served the pivotal tool in most industrial quality programs. In this study, system analyses
have been performed associated with a cost incorporated version of a process control, a quad-
ratic loss-based X control chart model, Specifically, two issues, the capital /research
investments for improvement of a system and the precision of a parameter estimation, have
been addressed and discussed.

Through the analysis of experimental results, we show that process variability is seen to be
one of the most important sources of loss and quality improvement efforts should be directed
to reduce this variability, We further derive the results that, even if the optimal designs may
be sensitive, the model appears to be robust with regard to misspecification of parameters.
The approach and discussion taken in this study provide a meaningful guide for proper pro-

cess control. We conclude this study with providing general comments.
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l. INTRODUCTION

Statistical process control has served the pivotal tool in most industrial quality programs for im-
proving quality of manufactured products. Duncan[3] has presented a cost incorporated version of
a process control, the economic design of control charts (EDCC), and many researches have been
performed to extend Duncan’s model{1,4,6,7,8,10]. Recently, the significance of process variation
receives wide attention primarily due to Taguchi[9]s definition of quality loss. He further
emphasizes that such loss can be reduced only through the reduction of product variation. Jeon[5]
has presented an alternate designing approach which incorporates Taguchi’s quadratic loss concepts
into EDCC framework and thus accounts for a loss due to this variability explicitly. The major sig-
nificance of his study lies not only in controlling a process in an optimal state but in providing im-
petus for continual process improvement. Remember that, even if the product variability loss may
implicitly be derived, a direct and explicit quantification of this loss is not possible from the con-
ventional model. He has also classified the system cost into various cost components including pro-
cess (product) variability loss and performed extensive sensitivity analyses using statistical exper-
imental design.

Industry is often faced with deciding whether or not to undertake a capital investment to im-
prove system performance. Such investments might be made for a major change in the existing
system, like the purchase of a new process, or for partial replacement of some component(s)
within the system. A research investment which might yield a system cost reduction may also be
a relevant example. Our concern is to determine if an investment proposal is cost effective or how
much can be saved from it. Information that can act as an economic justification of the invest-
ment is needed in decision making, especially for management, We know that management com-
mitment serves as the sole driving force in solving many system problems,

Another issue that is important but has not been fully addressed is to examine the precision to
which a parameter needs to be estimated. The mathematical models developed require exact
values of the various parameters in order to produce an optimal decision rule. In field exercises,
however, precise measurements of parameters are generally difficult (or, at least, require signifi-
cant efforts) to obtain, yet a misleading policy may be generated if imprecise measurements are
incorporated into the model. Therefore, an examination of the impact of measurement errors on
the optimal decision may tell us whether or not precise estimates are needed. Conceptually, if a
slight musspecification of a parameter produces a policy to be adopted but that is not close to a
true optimal, then that parameter should be estimated precisely. On the other hand, rough guesses
may suffice for other parameters that produce designs that are close to optimal, even if the errors

in the estimates are large,
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In a strict sense, these issues are not independent but rather interrelated. Significant efforts
would be required for an explicit analysis of each, and different approaches may be taken
depending upon the situation, The major purposes of this study are thus to empirically generate
data for i) the capital and research investments for improvement of a system, and ii) the precision
of a parameter estimation within the EDCC model. We will first briefly review the quadratic loss
based economic X chart model in section 1I. Then, in section III and IV, discussion associated
with above issues will be given with examples. Finally, in section V, we conclude this study with

providing general comments,

ll. QUADRATIC LOSS BASED EDCC MODEL

In this section, the quadratic loss based EDCC model presented by Jeon[5] will be briefly
reviewed. (Detailed discussion of basic concepts of EDCC may be referred to Duncan[3].)

Consider that we are to design a control chart for a process which produces r items per hour
whose measured quality characteristics during in control are normally distributed with mean u and
variance ¢°. The process often shifts to an out-of-control state due to the occurrence of an assign-
able cause and is now represented by shifted mean y=p-+ds but unchanged variance ¢° during this
period. The time between the occurrence of assignable causes is assumed to be exponentially

distributed with mean 1/ hours. We take a sample of size n every h hours and plot its average

value on the chart. If the plot lies outside of the predetermined control limits, piko/\/l’l, the
process is suspected of being out of control. A search for the potential assignable cause is followed
and, once found, the process is returned to the in-control state with correction of it. Our objective
is to find the optimal values for sample size(n), control limit(k), and sampling interval(h), which
simultaneously minimize the total cost. In this study, we assume that production continues during
the search and repair periods, called the continuous process model.

The loss associated with an item from quality loss form proposed by Taguchi[9] is
L(x)=C(x—mY

where C is a constant to be determined and m is the target value. Incorporation of this loss into
the EDCC framework yields the losses per item during in- and out-of- control periods as follows:

(The process mean is presumed to be equal to m during in-control period.)

92

Co’, if y=m
E[L] =
C(1+6)d% if p=utéo#*m
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The final form of the hourly expected total cost, ETC(n,k,h), and five cost components classi-
fied by Jeon are summarized in the Appendix with notation, For system analyses, he applied a
fractional factorial design, Ly(3)" orthogonal array [9]. We will generally follow his design and

results for analysis. First, the three levels of each parameter considered are given in Table 1.

Table 1 Input Parameters and Their Vaiues

Factor Low Level Medium High
o 3 4 5
s 1 1.5 2
A 0.01 0.02 0.03
r 10 20 30
T 0.05 0.1 0.2
Te 0.1 0.5
T: 0.1 0.5
C 0.2 0.3 0.4
C. 100 300 500
Cs 1 5 10
C. 0.5 2 5
C. 10 50 100
C. 10 50 100

These 13 parameters are arranged at the L(3)" array columns in the order

g0 A1, T, T, T, C, C, C, C, C., and C..
Then, the optimal solutions of the 36 input data sets are obtained and they are summarized in
Table 2. The optimal designs are given in columns 2 through 4, and the five cost terms are shown

with ETC in later columns. ETC* in the table represents the sum of five cost components.

ll. REDUCTION OF COSTS

Efforts to improve quality (reduce cost) through capital investment are often proposed in quality
control programs and generation of data that can measure the obtainable cost savings from such
potential investments is desirable, The classification of cost components, Equations (A-2) through

(A-6), and the results given in Table 2 may be useful for this data gathering.



FE12% B COMPLEMENTARY ANALYSES OF ECONOMIC X CHART MODEL 115
Table 2 Optimal Solutions

False Search ETC*

TC n* k* h* Lo L, Sampling and

Alarm Repair

1 12 2.42 8.91 16.84 2.32 0.79 0.16 0.19 20.29
2 6 2.54 2.86 89.78 20.23 5.94 1.06 1.12 118.12
3 3 2.48 1.29 257.52 212.40 19.40 4.29 2.83 496.44
4 10 2.10 24.30 22.74 8.52 2.47 0.55 0.93 35.20
5 4 2.50 0.97 114.86 42.70 3.09 1.14 0.36 162.15
6 4 2.74 1.19 145.05 24.75 10.91 1.47 1.74 183.92
7 8 1.82 4.84 95.99 24.02 4.34 1.20 1.96 127.51
8 5 2.18 6.61 26.50 17.87 5.30 0.99 0.50 51.16
9 3 3.12 0.74 147.06 14.68 3.38 1.19 0.59 166.90
10 7 1.86 6.96 57.55 28.90 5.17 1.95 1.44 95.01
11 8 3.02 2.88 91.69 14.02 3.13 0.41 1.05 110.30
12 3 2.20 2.36 71.21 18.94 6.78 1.09 0.38 98.41
13 7 2.94 2.78 32.22 12,28 3.06 0.51 2.69 50.75
14 4 2.40 3.87 61.03 14.87 4.65 0.40 1.43 82,37
15 7 1.92 4.21 200.10 49.81 8.55 3.33 1.07 262.85
16 7 2.68 4.00 47.05 22.60 6.01 0.76 1.57 77.97
17 2 2.06 1.60 188.13 19.37 6.86 2.39 0.98 217.72
18 11 2.52 5.04 42.64 14.72 2.08 0.57 2.56 62.56
19 5 2.56 3.34 76.64 14.17 3.29 0.87 1.42 96.39
20 4 2.70 3.17 60.67 16.63 7.89 1.00 1.14 87.34
21 10 2.06 3.62 84.95 30.11 4.15 0.88 2.55 122.62
22 3 1.66 4.87 49.36 15.08 5.14 1.73 1.83 73.14
23 5 3.18 1.17 43.48 22.62 2.98 0.34 4.08 73.49
24 11 2.44 5.13 186.93 26.15 5.26 1.30 0.56 220.20
25 4 2.92 3.84 15.80 11.01 2.4 0.38 2.63 32.17
26 4 1.32 4.98 83.07 25.87 5.02 3.01 5.19 122.16
27 8 2.82 2.02 292.44 24.58 6.91 0.69 1.07 325.69
28 5 2.92 2.12 69.36 13.20 5.90 0.47 3.85 92.78
29 8 2.36 3.60 81.11 29.79 4.73 2.03 2.79 120.44
30 4 1.86 5.74 69.49 17.92 4.35 0.99 1.39 94.14
31 4 2.60 1.30 72.97 40.16 5.38 0.63 2.97 122.11
32 10 2.18 10.34 57.46 13.07 2.90 0.72 1.35 75.51
33 5 2.46 3.38 93.76 20.29 7.69 1.86 3.75 127.35
34 3 2.42 5.35 33.73 11.35 3.7 0.79 1.03 50.64
35 16 2.76 3.77 130.29 27.41 4.78 0.67 2.71 165.87
36 4 2.18 1.64 93.68 20.54 5.50 1.64 5.62 126.98




116 Tae Bo Jeon RaEf g

Before discussion about data generating, we first examine the system based on the cost
components and Figure 1 displays the relative significance between them. The percentages shown

in the figure are obtained by taking arithmetic averages from the results obtained in Table 2.

Significance
71%
21%
5%
2%
1%
l Cost
L, L, Sample Search / False Component
Repair Alarm

Figure 1 Comparative Display of Significance of the Cost Components

We see, from this figure, that the most significant portion, 90% or more, of the total cost is
accounted for by L, and L, clearly indicating that the product variability loss is the most import-
ant source of waste and should be tightly controlled. This is the consistent result that the re-
duction of product variability should serve a major approach to improve quality and to reduce Sys-
tem cost in the long run. Therefore, a major effort in any quality control program should be
directed toward reduction of product variability and its loss.

Next, the sampling cost accounts for roughly 5% of the total cost, and its magnitude is much
smaller than those of the variability losses. This result may indicate that significant efforts or

investments to reduce sampling cost would not be considered cost effective. Note, however, that
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to believe achievement of quality improvement through sampling alone is a definite misunderstand-
ing. Although sampling may improve the quality of products by preventing bad items from being
delivered to customers, the quality of products can be improved only when the process variance is
reduced in a strict sense. That is, for a given process situation, the quality of products cannot be
changed and the costs such as the variability loss are inevitable or not reducible regardless of
sampling. This argument is, inpart, consistent with Deming’s [2]) admonishment to “cease depen-
dence on inspection to achieve quality.” The real meaning and role of sampling lie in the feedback
mechanism, which continuously monitors the system status and generates timely signals against
problems so that further unnecessary loss is prevented. Without sampling, more significant system
loss may be incurred until an operator notices the process shift or the process is adjusted. This
feedback mechanism is specifically important because more accurate information about process
parameters--the process mean, the process variance, the mean shift amount, or even the time until
the process shift--may be obtained or estimated by proper accumulation of the sampling results.

Although any quality control activity that reduces cost may be desirable, the search and repair
cost component and that of false alarms call for special attention. The results described in the
table and figure show that, although the cost component of search and repair is significantly affec-
ted by some parameters such as 4, C., and C,, this component does not comprise a large portion of
the total cost. Therefore, significant and urgent efforts may not be required to reduce this cost,
unless frequent process shifts and large search and repair costs are expected. Similarly, the false
alarm cost component is particularly dependent upon some parameters such as g, 4, r, and C,, but
its portion of the total cost is smaller than that of any other cost component.

We now discuss about the quantification approach. Since a complicated and systematic approach
is required for explicit analyses, a brief demonstration through numerical examples will be given.
Suppose the current system status is represented by Table 3 as the parameter values given in the
second column. Then some investment proposals: i) research performing a process capability study
to reduce o, ii) purchase of an automatic inspection device to reduce T, C; and C, and iii) re-
search to improve T., T. C. and C.. are considered. These proposals are also listed in separate
columns of the table with appropriate new parameter values expected from each in brackets, [. 1.
The bottom half of the table shows the results and hourly cost saving obtainable if the new par-
ameter sets are applied.

The results of this table show that a significant cost reduction (about 22%) is expected from
the research investment improving ¢ only {(proposal 1), This is because both I, and L;, two major
system cost components, are specifically reduced through improvement of ¢. Some cost savings are
also expected from the other two proposals. Proposal II, purchase of an automatic inspection de-

vice, particularly reduces L,, the sampling cost, and the false alarm cost through reductions in T,
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Ci, and C, Finally, remarkable cost savings, more than 35% of L, and about 70% of the search
and repair cost, are expected if proposal III is implemented. Nevertheless, total cost savings
expected from proposals II and III are not so great as that of proposal I, since the cost

component L, is not reduced much.

Table 3 Investments and Expected Cost Savings

Factor Current Proposal 1 Proposal 11 Proposal 111
Status
c 4 [(3.5] 4 4
5 1.5 1.5 1.5 1.5
A 0.02 0.02 0.02 0.02
r 50 50 50 50
T, 0.1 0.1 [0.05] 0.1
T. 1 1 1 [0.3]
T 1 1 1 [0.3]
c 0.1 0.1 0.1 0.1
C. 250 250 250 250
C 2 2 [0.5] 2
Cs 0.5 0.5 [0.1] 0.5
C. 50 50 50 [15]
C. 50 50 50 [15]
a .0048 .0048 .0010 .0048
B .1965 .1965 1729 .1965
n 6 6 8 6
k 2.82 2.82 3.30 2.80
h 1.63 1.87 0.82 1.59
L, 74.32 56.71 75.49 76.36
L, 18.45 14.75 14.65 11.84
Sample 3.06 2.67 1.58 3.15
False 0.67 0.58 0.27 0.71
Search / 1.86 1.85 1.89 0.57
Repair
ETC 98.37 76.56 93.88 92.63
Save /hr -— 21.81 4.49 5.74
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We see that explicit results from individual cost component changes can be obtained even when
we cannot actually figure out the complicated interactions between parameters, That is, data not
only justifying a given investment proposal but determining a priority order of implementation
(when multiple proposals are available) are easily generated. Further, an appropriate pay-back
period for a proposal may be obtained without any difficulty. More accurate and comprehensive in-
vestment decisions, however, should be made considering numerous other factors such as the time

value of money, and the procedure may be more complicated in this situation,

IV. PARAMETER ESTIMATION

It is generally difficult to precisely evaluate the parameter values in field exercises and errors
made in parameter estimates may produce suboptimal decisions. This concern calls for a study of
how precisely a given parameter should be estimated before a systematic estimation procedure is
taken. Qur another task of this paper, therefore, is to briefly address an approach that can ex-
plicitly quantify the error that might be incurred in both the decision and the total cost.

Again, the results of the previously obtained provide some intuitive answers, Although this in-
tuitive analysis may work in some cases, it is not comprehensive enough and a more systematic
approach may be desirable. Let us define n,, ko, and h, to be the optimal design parameter values
obtained from a model when a correct value(p,) of a parameter, say p, is used. Then, ETC[n,k,,
he:po] indicates the true optimal total cost. When the parameter value is incorrectly estimated(p,),
a suboptimal design will be produced and n,, ki, and h; are assumed to denote the resulting design.
The actual cost incurred may then be obtained if the suboptimal design above is applied to the
real system having the parameter value p,. This cost is expressed by ETCln,k;,hi:po]. The differ-
ence between this cost and the true optimal cost provides the actual cost error incurred from
misspecifying parameter values. Qur concern is to examine the errors incurred in both the design
and cost.

We will also illustrate this approach using some examples. The same parameter values specified
in the previous section are assumed for correct parameter values of a current system. Then, we
postulate a scenario in which some parameters have been over-estimated by a certain degree from
the assumed values. Tables 4 and 5 address situations where 20% and 50% over-estimates have
been assumed for some parameters, respectively. Again, the values given in the second column
show the correct parameter values specified and the generated optimal solutions. The considered
parameters are then listed in later columns, and their over-estimated values are given in brackets.
Finally, detailed results of the associated suboptimal solution for each case are described in the
bottom part of each table. ETCI0 in the table specifically implies the total cost ETC[n,k;,h;:pe]

which is obtained by the suboptimal design to the actual system.
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Table 4 Impact of Misspecification of a Parameter
[20% Over-Estimate]

Factor Current C é o C. C.(C))
Value
¢ 4 4 4 [4.8] 4 4
b 1.5 1.5 [1.8] 1.5 1.5 1.5
A 0.02 0.02 0.02 0.02 0.02 0.02
r 50 50 50 50 50 50
T 0.1 0.1 0.1 0.1 0.1 0.1
T. 1 1
T 1 1 1 1 1
C 0.1 [0.12] 0.1 0.1 0.1 0.1
Ca 250 250 250 250 [300] 250
Ce 2 2 2 2 2 2
C, 0.5 0.5 0.5 0.5 0.5 0.5
C. 50 50 50 50 50 [60]
C. 50 50 50 50 50 [60]
a .0048 .0048 .0033 ,0048 .0042 .0048
B .1965 .1965 .1390 21965 .2078 .1965
n 6 6 5 6 6 6
k 2.82 2.82 2.94 2.82 2.86 2.82
h 1.63 1.49 1.33 1.35 1.62 1.63
ETCy 98.37* 98.40 98.68 98.50 98.38 98.37

*ETCln,, ko, ho:po] true optimum

From the tables, we see that the largest errors in the design parameter values are incurred
when § is estimated incorrectly; i.e. , as the estimation error é of grows, the values of the design
parameters move far off from the optimum. Therefore, careful and precise estimation of this par-
ameter is needed to arrive at a correct decision. The opposite result is observed when C. and C,
are misspecified. Even when they are over-estimated by 5024, no considerable errors are incurred
in the design or the cost. Hence, the effects of these parameters are not so significant in the
EDCC model and precise estimates of them may not be required. When other parameters are
incorrectly estimated, some errors in either one or two of the design parameters are observed. In

our examples, the sampling interval (h) is specifically affected when C, 8, or C, is misspecified.
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Table 5 Impact of Misspecification of a Parameter
[50% Over-Estimate]

Factor Current C o c C. C.(C))
Value
o 4 4 4 [6.0] 4 4
5 1.5 1.5 [2.25] 1.5 1.5 1.5
A 0.02 0.02 0.02 0.02 0.02 0.02
r 50 50 50 50 50 50
T 0.1 0.1 0.1 0.1 0.1 0.1
T. 1
T, 1 1 1 1
C 0.1 [0.15] 0.1 0.1 0.1 0.1
C. 250 250 250 250 [375] 250
Cs 2 2 2 2 2
C. 0.5 0.5 0.5 0.5 0.5 0.5
Ce 50 50 50 50 50 [75]
C. 50 50 50 50 50 [75]
o .0048 .0048 .0029 .0048 .0029 .0048
.1965 .1965 .1795 .1965 .1614 .1965

n 6 6 3 6 7 6
k 2.82 2.82 2.98 2.82 2.98 2.82
h 1.63 1.33 0.90 1.08 1.75 1.64

ETCy 98.37* 98.52 101.06 99.01 98.45 98.37

*ETC[ny, ko, ho:pe] true optimum

Rather robust results of the sample size and control limits have been produced, however.

When we examine the total cost error incurred, an interesting phenomenon is observed. In con-
trast to the case of the design parameters, no significant errors in the total cost have been
produced. Hence, errors made in the estimation of the other parameters particularly affect the de-
sign parameters but not the expected total cost. Therefore, the total cost is not considerably af-
fected by measurement errors, indicating that the EDCC model appears to be robust to errors in
parameter estimates. As seen, the approach taken in this section explicitly quantifies the impact

of errors made in parameter estimates, even if only some limited examples are provided.
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V. CONCLUSION

In this study, two issues concerning to the capital investments for quality improvement and the
effects of errors in parameter estimates have been addressed. Our results specifically indicate that
product variability reduction appears to be the major way to improve quality and reduce system
cost. The results further indicate that, even if the optimal design may be rather sensitive, the
model appears to be rather robust with regard to errors in parameter estimates. The results are
dependent on the parameter value ranges specified and thus may be different in other cases. The
approach and discussion given in this study, however, provide a meaningful guide for proper pro-
cess control and management, More comprehensive analysis with proper decision criteria may be

applied for more general conclusions and may form a good future research.
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APPENDIX

In this Appendix, we summarize the total hour cost of EDCC model and cost components given

by Jeon[5]. First, the model and cost parameters used in this study are defined as follows:

& : process mean shift amount during out-of-control period in terms of
r : production rate per hour

C,: production cost per item

C; : fixed sampling cost

C, : variable sampling cost per item

: false alarm cost

o0

: cost to search for an assignable cause

(@

: cost to repair an assignable cause

o

: time to measure the quality characteristic for each item

)

: time to search for an assignable cause, and

=

: time to repair an assignable cause,

Next, the objective function, hourly expected total cost, is derived as follows:

ETC(n, k, h) = #[C,+C(1+6)e2] = E‘fhni + 50T [%———'—C—fi + CAC)

where a=2®0(—%) and ®(.) denotes the standard normal CDF. Further, in this equation, T

represents the cycle length and its expected value is given by

E[T] =Tﬁ_ﬂ—+7h—7+nTs+Te+Tr

where B=®(k—&~h)—®(k—5~n). Note that this equation is dependent upon the magnitude of
process mean shift(é) and the process variance(s’) which have not been explicitly shown in the
conventional models.

Classification of this equation with elimination of the term rC, results in five cost components as

follows:
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__rCé -

L = £t (A-D)

L, = rC(I+6)o’(1—- ﬁfT]_)’ (A=-2)

Sampling Cost = C;-i;l_ncs’ (A-3)
Cao

False Alarm Cost = ‘m, (A—4)

Search /Repair Cost = Gt G , (A-5)
ELT

In ETC(n, k, h), rC, is a constant and does not have any effect on the optimal decision. So we

eliminate this term from consideration and the notation ETC is adopted to the sum of these cost

terms.



