A Perturbation Based Method for Variational Inequality over Convex Polyhedral

Koohyun Park*

Abstract

This paper provides a locally convergent algorithm and a globally convergent algorithm for a variational inequality problem over convex polyhedral. The algorithms are based on the B (ouligand)-differentiability of the solution of a non-mooth equation derived from the variational inequality problem. Convergences of the algorithms are achieved by the results of Pang[3].

1. Introduction

In the papers[1, 3, 5, 6, 9], the authors present systems of nonsmooth equations derived from variational inequality problems. Robinson[11] suggested a 'normal map' equation which is equivalent to variational inequality problems. The normal map could be understood by two ways. First, it is a composite map of $f \circ g$ where f is F(rechet)-differentiable and g is Lipschitz continuous. Robinson[9] described a Newton's method for the composite map equation and Park[6] developed a Newton-Mysovskii type local convergence and a globally convergent continuation method based on the local convergence. Robinson[10] obtained conditions of homomorphism of the normal map which is essential to the globally convergent continuation method. Second, the normal map is B(ouligand)-differentiable. No methods using B-differentiability for the normal map equation are known to us. But, Pang extended the classical Newton's method to B-differentiable systems of equations and he applied the Newton's method to the systems derived from variational inequality problems. Pang[4] also briefly discussed the continuation method of the Newton's method.

^{*} Department of Industrial Engineering, Hong-Ik University

In this paper we apply the Newton's method of Pang[3] to the normal map equation, suggested by Robinson[11], which is equivalent to variational inequality problems. In specializing the Newton method to a given B-differentiable equation, we need to solve a system of nonlinear equations, called as a generalized Newton equation, for finding a direction at each iteration. To solve the generalized Newton equation derived from the normal map, we use the B-differentiability of the solution of the perturbed variational inequality problem defined over a polyhedral convex set. The B-differentiability of the solution of generalized equation is given by Robinson[8] and is rephrased by Kyparisis for variational inequality problem over polyhedral convex set in [2].

The rest of the paper is organized in three sections. In the next section, we review some mathematical programming problems and their relationship. We also discuss the normal map and B-differentiability. In section 3, we perturb the problem and obtain some useful results in our method. Section 4 contains the algorithms and their convergences. Numerical examples are in section 5.

2. Preliminaries

The variational inequality problem defined over convex polyhedral is to find $y \in C \subset R^n$ such that

$$\langle z-y, f(y) \rangle \ge 0$$
 for all $z \in C = \{z \in R^n | Az \le b\}$

where $f:R^n \to R^n$ is continuously F-differentiable, $A \in R^{m \times n}$, and $b \in R^m$. $<\cdot$, $\cdot>$ denotes the inner product. Through this paper VI(C, f) denotes the variational inequality problem defined by C and f.

The variational inequality problem VI(C, f) has close relationship with several mathematical programming problems. If $C = R^n_+$, VI(C, f) is the nonlinear complementary problem to find $y \in R^n$ such that

$$y \ge 0$$
, $f(y) \ge 0$, $\langle f(y), y \rangle = 0$.

Define the normal cone of C at x by

$$\{z \mid \langle y - x, z \rangle \le 0, \forall y \in C\}, \text{ if } x \in C$$

$$N_c(x) = \emptyset, \text{ if } x \in C$$

Then the generalized equation of

$$0 \in f(y) + N_c(y)$$

is equivalent to VI(C, f).

Consider the nonlinear programming problem and let y^* be an optimal solution.

Minimize
$$f(y)$$

Subject to $h(y) = 0$
 $g(y) \le 0$.

Then the following necessary optimality condition is satisfied at y*;

$$\langle z-y^*, \nabla f(y^*) \rangle \geq 0 \quad \forall z \in C$$

where $C = \{z \in R^n | \langle z - y^*, \nabla g_I(y^*) \rangle \leq 0, \langle z - y^*, \nabla h(y^*) \rangle = 0\}$ is the set of feasible directions and the subscript I of ∇g_I denotes the index set of binding constraint g at y^* . The above necessary optimality condition is a $VI(C, \nabla f)$ where ∇f denotes the F-derivative of f.

We now introduce B-differentiability and directional differentiability of functions. Let $G: R^n \to R^m$ be Lipschtz continuous. Then G is B-differentiable if there is a positive homogeneous function $DG: R^n \to R^m$ such that

$$\lim_{h\to 0} |\{G(x+h)-G(x)-DG(x)h\}/||h|| = 0.$$

The directional derivative of G(x) at x in the direction v is defined to the limit

$$G'(x;v) = \lim_{\tau \downarrow 0} \{G(x+\tau \cdot v) - G(x)/\tau.$$

 $P_c(x)$ denotes the projection of x on C and $G(x) = f(P_c(x)) + x - P_c(x)$ is called the normal map.

Lemma 1 Let $f: R^n \to R^m$ be continuously F-differentiable. Then

 $G(x) = f(P_c(x)) + x - P_c(x)$ is B-differentiable.

Proof. For given $x \in R^n$, $v \in R^n$ and sufficiently small $\tau > 0$, there exists $d \in R^n$ such that $P_c(x+\tau \cdot v) = P_c(x) + \tau \cdot d$ and $P'_c(x;v) = d$. clearly $P'_c(x;v)$ is positively homogeneous in v. For each v, w in R^n and $\tau > 0$, from the Lipschtz continuity of $P_c(\cdot)$

$$||P_c(x+\tau\cdot v)-P_c(x+\tau\cdot w)|| \leq \tau ||v-w||.$$

By dividing by τ and taking $\tau \downarrow 0$ on both sides of inequality, we obtain

$$\|P'_{c}(x;v)-P'_{c}(x;w)\| \le \|v-w\|.$$

Hence $P'_c(x; \cdot)$ is Lipschtz continuous. Now if we show $DP_c(x)v = P'_c(x; v)$, then $P_c(x)$ is B-differentiable and so is G(x). For any sequence $\{h_n\}$ that converges to 0, choose sequences $\{\tau_n\}$ and $\{d_n\}$ such that $h_n = \tau_n \cdot d_n$ where $\tau_n \downarrow 0$ and $\|d_n\| = 1$ for $n = 1, 2, \cdots$. Then there exists a limit point d^* of $\{d_n\}$. Choose a subsequence $\{d_n\}$ such that $d_n \rightarrow d^*$. For the subsequence $\{n_n\}$,

$$\lim_{j \to \infty} \frac{\{P_{c}(x+h_{nj}) - P_{c}(x) - P'_{c}(x;h_{nj})\}/\|h_{nj}\|}{= \lim_{j \to \infty} \frac{\{P_{c}(x+\tau_{nj} \cdot d_{nj}) - P_{c}(x) - P'_{c}(x;\tau_{nj} - d_{nj})\}/\|h_{nj}\|}{= \lim_{j \to \infty} \left[\frac{P_{c}(x+\tau_{nj} \cdot d_{nj}) - P_{c}(x)}{\tau_{nj}} - P'_{c}(x;d_{nj})\right]}{= \lim_{j \to \infty} \left[\frac{P_{c}(x+\tau_{nj} \cdot d^{*}) - P_{c}(x)}{\tau_{nj}} - P'_{c}(x;d^{*})\right]}{= P'_{c}(x;d^{*}) - P'_{c}(x;d^{*})}$$

Pang[3] presented another B-differentiable equation arised from VI(C, f). Let $\nabla H(y) = f(y)$. Then the VI(C, f) is the necessary optimality condition of the following nonlinear program with linear constraints:

Minimize
$$H(y)$$

Subject to $Az \le b$.

With constraint qualification, the Kuhn-Tucker conditions are

$$f(v) + uA = 0$$

$$u \ge 0$$
, $\langle u, Az - b \rangle = 0$, $Az \le b$.

Hence he has the B-differentiable equations equivalent to the Kuhn-Tucker conditions:

$$f(y) + u^{T} A = 0$$

min $\{u, b - Az\} = 0.$

Lemma 2 Suppose y^* solves the VI(C, f). Then $x^* = y^* - f(y^*)$ solves the normal map equation $f(P_c(x)) + x - P_c(x) = 0$. Conversely, if x^* solves the normal map equation, then $y^* = P_c(x^*)$ solves VI(C, f).

Proof. For any solution y^* of VI(C, f)

$$\langle z-y^*, -f(y^*)\rangle = \langle z-y^*, x^*-y^*\rangle \le 0 \quad \forall z \in C.$$

From the condition of normal cone, $-f(y^*) = x^* - y^* \in N_c(y^*)$. Hence $P_c(x^*) = y^*$ and we have $x^* = y^* - f(y^*) = P_c(x^*) - f(P_c(x^*))$. Conversely from the definition of normal cone of C at $P_c(x^*)$, we have $x^* - P_c(x^*) \in N_c(P_c(x^*))$. Now et $y^* = P_c(x^*)$. Then the normal map equation is $f(y^*) + x^* - y^* = 0$. Hence for all $z \in C$,

$$\langle z-y^*, -f(y^*)\rangle = \langle z-y^*, x^*-y^*\rangle$$

$$= \langle z-P_c(x^*), x^*-P_c(x^*)\rangle$$

$$\leq 0. \quad \blacksquare$$

3. Perturbed Variational Inequality Problem

For any $x \in R^n$, VI(C, -e+f) denotes the perturbed variational inequality problem; find $y \in R^n$ such that $\langle z - y, -e + f(y) \rangle \ge 0$ for all $z \in C$.

Lemma 3 For any $x \in R^n$, let $e = f(P_c(x)) + x \cdot P_c(x)$. Then $y = P_c(x)$ solves VI(C, -e + f). **Proof.** Since x solves the equation of $-e + f(P_c(x)) + x - P_c(x) = 0$, by Lemma 2, $y = P_c(x)$ is a solution of $\langle z - y, -e + f(y) \rangle \geq 0$ for all $z \in C$.

Through this paper we use the notations. For given x and e, let $F(x, e) = f(P_c(x)) - e + x - P_c(x)$. For a given x, let $e(x) = f(P_c(x)) + x - P_c(x)$ and for a given e, let x(e) be the solution of F(x,e)=0. For a given e, let y(e)

be the solution of VI(C, -e+f) and hence $y(e) = P_c(x(e))$.

Now we introduce the perturbation analysis of VI(C, -e+f) by applying the result of generalized equation given by Robinson[8] to the variational inequality problem. This application to the variational inequality problem over a polyhedral convex set is also found in [2, 4, 7].

Theorem 1 For a given $e^k \in R^n$, suppose that $\nabla f(y(e^k))$ is positive definite on $C_k - C_k$ where $C_k = \{z \mid \langle f(y^k), z \rangle \stackrel{!}{=} \langle e^k, z \rangle, A^k z \leq 0\}$ and A^k denotes the rows of the matrix A corresponding to the binding constraints of $Az \leq b$ at $y(e^k)$. Then there exist neighborhoods U of e^k , V of $y(e^k)$, and Lipschtiz continuous functions $y: U \to V$ with the following properties

- (a) for each $e \in U$, y(e) is the unique solution of VI(C, -e + f(y)) in V;
- (b) for each $e \in U$, $-y(e) \in C_k$;
- (c) the function $y(\cdot)$ is B-differentiable at e^k with B-derivative $v = Dy(e^k)u$ given as the unique solution of $VI(C_k, g_k)$ where $g_k = \nabla f(y(e^k))y u$.

Proof. It is clear from Theorem 3.2 of [8].

In Theorem 1, $C_k - C_k$ denotes the smallest subspace containing C_k and it is defined by

$$C_k-C_k=\{x-y \quad x\in C_k, y\in C_k\}.$$

For the algebra of convex sets, please see sections 2 & 3 of [12].

By using Theorem 1, we obtain the directional derivative of the solution x(e) of F(x,e) = 0 in the direction $-e^k$ at e^k .

Lemma 4 For a given x^k , let $e^k = f(P_c(x^k) + x^k - P_c(x^k))$ and let $v^k = Dy(e^k)(-e^k)$. Then the directional derivative of $x(\cdot)$ in the direction $-e^k$ at e^k is given by $d^k = Dx(e^k)(-e^k) = v^k - \nabla f(P_c(x^k))v^k - e^k$.

Proof. For each e, let y(e) be a solution of VI(C, -e + f). Then from Lemma 2, x(e) = y(e) - f(y(e)) + e.

By B-differentiating on both sides of the equation in the direction $-e^k$ at e^k , we have $d^k = Dx(e^k)(-e^k) = Dy(e^k)(-e^k) - \nabla f(y(e^k)) Dy(e^k)(-e^k) - e^k = v^k - \nabla f(y(e^k))v^k - e^k$

Recall the generalized Newton equation for B-differentiable function introduced in [3]. Let $G: \mathbb{R}^n \to \mathbb{R}^n$ be B-differentiable. Then

$$G(x^k) + DG(x^k)d = 0$$

is called the generalized Newton equation at x^k for G(x)=0.

Lemma 5 Let $G(x) = f(P_c(x)) + x - P_c(x)$ and let $e^k = G(x^k)$. Then $d^k = Dx(e^k)(-e^k)$ solves the generalized Newton equation at x^k for G(x) = 0.

Proof. Let F(x,e) = -e + G(x). Since $d^k = Dx(e^k)(-e^k)$,

$$0 = F'(x^{k}, e^{k}; -e^{k})$$

$$= D_{e} F(x^{k}, e^{k}) + D_{X} F(x^{k}, e^{k}) d^{k}$$

$$= e^{k} + D - x F(x^{k}, e^{k}) d^{k}$$

$$= G(x^{k}) + DG(x^{k}) d^{k}.$$

We now define a function $m: \mathbb{R}^n \to \mathbb{R}^n$ by

$$m(x) = (1/2) \| e(x) \|^2 = (1/2) \| f(P_c(x)) + x - P_c(x) \|^2$$

Then x solves G(x) = 0 if and only if m(x) = 0.

Lemma 6 d^k is a descent direction of $m(\cdot)$ at x^k .

Proof. From the proof of Lemma 5, $D_x F(x^k, e^k) d^k = -e^k$. Consider the equation e(x) = e + F(x, e). By directional differentiating in the direction d^k at x^k on both sides of the equation, we obtain $D_x e(x^k) d^k = D_x F(x^k, e^k) d^k$. And hence $D_x e(x^k) d^k = -e^k$. Therefore

$$m'(x^k; d^k) = e(x^k) De(x^k)d^k$$

 $= e^k(-e^k)$
 $= - \parallel e^k \parallel^2$
 $\langle 0 \text{ if } e^k \neq 0.$

4. Algorithms and Convergences

In this section we develop a locally convergent algorithm and a globally convergent algorithm.

Algorithm I

(step 0) Let x° be the initial guess of x^{*} and k=0.

(step 1) Compute $e^k = f(P_c(x^k)) + x^k - P_c(x^k)$.

(step 2) Compute the solution v^k of $VI(C_k, g_k)$ where $C_k = \{ z \mid \langle f(P_c(x^k)), z \rangle = \langle e^k, z \rangle, A^k \geq 0 \} \text{ and } g_k = \nabla f(P_c(e^k))z + e^k.$

(step 3) Compute $d^k = v^k - \nabla f(P_c(x^k))v^k - e^k$.

(step 4) $x^{k+1} = x^k + d^k$ and k = k+1. Go to (step 1).

In the global algorithm, (step 4) of Algorithm I is replaced by a line search step. For this step we use Armijo-Goldstein step-size rule. Let $\gamma > 0$, $\beta \in (0,1)$ and $\sigma \in (0, 0.5)$. Then $x^{k+1} = x^k + \alpha_k \cdot d^k$ where $\alpha_k = \beta^{(k)} \cdot \gamma$, $j(\mathbf{k})$ is the first nonnegative integer exponent such that $m(x^k) - m(x^k + \beta^k \cdot \gamma \cdot d^k) \ge - \sigma \cdot \beta^k \cdot m'(\mathbf{x}^k ; \mathbf{d}^k)$.

Algorithm II

(step 0) Let x^o be the initial guess of x^* and k=0.

(step 1) Compute $e^k = f(P_c(x^k)) + x^k - P_c(x^k)$.

(step 2) Compute the solution v^k of $VI(C_k, g_k)$ where

 $C_k = \{ z \mid \langle f(P_c(x^k)), z \rangle = \langle e^k, z \rangle, A^k z \leq 0 \} \text{ and } g_k = \nabla f(P_c(e^k))z + e^k.$

(step 3) Compute $d^k = v^k - \nabla f(P_c(x^k))v^k - e^k$.

(step 4) (Line Search) $x^{k+1} = x^k + \alpha_k \cdot d^k$ and k = k+1. Go to (step 1).

Theorem 2 In Algorithm I & II, if $v^k=0$, then $P_c(x^k)$ solves VI(C, f).

Proof. Since $v^k=0$ is a solution of $VI(C_k, g_k)$, we have

 $\langle z-\theta, \nabla f(P_c(x^k))\cdot \theta + e^k \rangle \geq 0, \forall z \in C_k \text{ where}$

 $C_k = \{ z \mid \langle f(P_c(x^k)), z \rangle = \langle e^k, z \rangle, A^k z \leq 0 \}. \text{ That is, } \langle z, e^k \rangle \geq 0, \forall z \in C_k.$

Hence for all $z \in \{ z \mid A^k z \le 0 \}$, $\langle z, e^k \rangle = \langle z, f(P_c(x^k)) \rangle \le 0$. Now let $z = P_c(x^k) + z$, then we have $\langle z - P_c(x^k), f(P_c(x^k)) \rangle \le 0$, $\forall z \in z \mid A^k z \le b \}$.

We now have a locally quadratic convergence of Algorithm I. Let $G(x) = f(P_c(x)) + x - P_c(x)$ = 0.

Theorem 3 Let x^* be a solution of G(x)=0. Suppose that G is continuously F—differentiable at x^* and $\nabla G(x^*)$ is nonsingular. Then there exists a neighborhood N of x^* such that for any initial guess x^* in N, the sequence $\{x^*\}$ generated by Algorithm I converges to x^* . If $DG(\cdot)$ is Lipschtz continuous at x^* , then the rate of convergence is quadratic.

Proof. It is clear from Lemma 5 of this paper and Theorem 3 of [3].

We also have a global convergence of Algorithm II.

Theorem 4 Let x° be any initial point in R^{n} . Assume that

- (a) $\{x \mid ||e(x)|| \leq ||e(x')|| \}$ is bounded and
- (b) for each k, $\nabla f(P_c(x^k))$ is positive definite on $C_k C_k$.

Let $\{x^k\}$ be any sequence generated by Algorithm II. Assume that $G(x^k) \neq 0$ for all k. Then,

- (i) $|| e(x^k+1) || \le || e(x^k) ||$,
- (ii) $\{x^k\}$ is bounded and
- (iii) if x^* is any accumulation point such that
- (c) $\| e(\cdot) \|^2$ is F-differentiable at x^* and
- (d) there exists a neighborhood N of x^* and a real number c > 0 such that for all $z \in N$ and all $v \in R^n$, $|| De(x)v || \ge c \cdot || v ||$. Then $P_c(x^*)$ is a solution of VI(C, f).

Proof. It is clear from Lemma 6 of this paper and Theorem 4 of [3].

5. Numerical Examples

We consider the following linear variational inequality problem defined over convex polyhedral (VI(C, f)).

$$VI(C, f) \quad \langle z-y, f(y) \rangle \geq 0 \text{ for all } z \in C$$

where $f(y) = \frac{2y_1 - 2}{4y_2 - 4}$ and $C = \{ (z_1, z_2) \in \mathbb{R}^2 \mid z_1 + z_2 \le 1, z_1 \ge 0, z_2 \ge 0 \}$. Then as presented

in the Preliminaries this problem is equivalent to the quadratic programming problem:

Minimize
$$y_1^2 + 2y_2^2 - 2y_1 - 4y_2$$

Subject to $y_1 + y_2 \le 1$
 $y_1 \ge 0, y_2 \ge 0.$

We can solve this problem directly by applying Lemke's algorithm. In fact, we suggest Lemke's alorithm for the linear variational inequality $VI(C_k, g_k)$ in our Algorithm I & II. Now we apply our Algorithm I to the linear variational inequality problem VI(C, f) though our algorithms are developed for nonlinear variational inequality problems.

[Initialization]

(step 0)
$$x^o = {0 \atop 0} \& k = 0$$

[Iteration 1]

(step 1)
$$y'' = P_c(x'') = 0$$
,

$$e^{\circ} = f(y^{\circ}) + x^{\circ} - y^{\circ} = \frac{-2}{-4} + \frac{0}{0} - \frac{0}{0} = \frac{-2}{-4}.$$
(step 2)
$$C_{\circ} = \{ z \in \mathbb{R}^{2} \mid \langle -2 , \frac{z_{1}}{z_{2}} \rangle = \langle -2 , \frac{z_{1}}{z_{2}} \rangle, z_{1} \geq 0, z_{2} \geq 0 \}$$

$$= \{ z \in \mathbb{R}^{2} \mid z_{1} \geq 0, z_{2} \geq 0 \}$$

$$g_{\circ} = \frac{20}{04} \frac{z_{1}}{z_{1}} + e^{\circ} = \frac{2z_{1} - 2}{4z_{2} - 4}.$$

 $VI(C_o, g_o)$ is equivalent to the quadratic programming problem (QP_o) :

$$QP_{o}$$
 Minimize $y_{1}^{2} + 2y_{2}^{2} - 2y_{1} - 4y_{2}$
Subject to $y_{1} \ge 0, y_{2} \ge 0.$

The solution of QP_o is $\frac{1}{1}$, this is v^o .

(step 3)

$$x^{1} = x^{\circ} + d^{\circ} = {0 \atop 0} + {1 \atop 1} = {1 \atop 1}$$
.

[Iteration 2]

(step 1)

$$y^{1} = P_{c}(x^{1}) = \frac{1}{2} \frac{1}{2},$$
 $e^{1} = f(y^{1}) + x^{1} - y^{1} = \frac{-1}{2} + \frac{1}{1} - \frac{1}{2} = \frac{-1}{2} \frac{2}{2}.$

(step 2)

$$C_{1} = \{ z \in R^{2} | \langle -1 , z_{1} \rangle = \langle -1/2 , z_{1} \rangle, z_{1} + z_{2} \leq 0 \}$$

$$= \{ z \in R^{2} | z_{1} + z_{2} = 0 \}$$

$$g_{1} = \begin{cases} 20 & z_{1} \\ 0.4 & z_{2} \end{cases} + e^{1} = \begin{cases} 2z_{1} - 1/2 \\ 4z_{2} - 3/2 \end{cases}.$$

 $VI(C_1, g_1)$ is equivalent to the quadratic programming problem (QP_1) :

$$QP_1$$
 Minimize $y_1^2 + 2y_2^2 - (1/2)y_1 - (3/2)y_2$
Subject to $y_1 + y_2 = 0$.

The solution of QP_1 is $\begin{array}{cc} -1/6 \\ 1/6 \end{array}$, this is v^1 .

(step 3)

(step 4)

$$x^2 = x^1 + d^1 = \frac{1}{1} + \frac{2/3}{1} = \frac{5/3}{2}$$
.

[Iteration 3]

$$y^2 = P_c(x^2) = \frac{1/3}{2/3}$$
,
 $e^2 = f(y^2) + x^2 - y^2 = \frac{-4/3}{-4/3} + \frac{5/3}{2} - \frac{1/3}{2/3} = \frac{0}{0}$.

By the proof of Lemma 6, $e^k = 0$ implies $d^{k} = 0$. Since $I - \nabla f(P_c(x^k)) = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix}$ is not zero in this problem, $v^k = 0$. By Theorem 2 the current point $y = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}$ is the solution of VI(C, f).

6. Conclusions

This paper provides a locally convergent algorithm and a globally convergent algorithm for a variational inequality problem over convex polyhedral. The algorithms are based on the B (ouligand) - differentiability of the solution of a nonsmooth equation, which is a normal map equation derived from the variational inequality problem. The algorithms need to solve a linearized variation inequality problem and the solution can be obtained by Lemke's algorithm. Even though the convergences of the algorithms are achieved in the case of F-differentiability at the solution point by using the results of Pang[3], the algorithms are based on the B-differentiability of solutions. The convergences of the algorithms F-differentiability at the solution point are expected to be possible and this will be the future research.

Refernces

- [1] Han, S. -P., Pang, J. -S. & Rangaraj, N., "Globally Convergent Newton Methods for Nonsmooth equations", *Mathematics of Operations Research*, 17(1992), pp 586-607.
- [2] Kyparisis, J. "Perturbed Solution of Variational Inequality Problems over Polyhedral Sets", Journal of Optimization Theory and Applications, 57(1988), pp 295-305.
- [3] Pang, J. -S., "Newton's Method for B-differentiable Equations", manuscript, Department of Mathematical Sciences, The Johns Hopkins University, (1988).
- [4] Pang, J. -S., "Solution Differentiability and Continuation of Newton's Method for Variational Inequality Problems over Polyhedral Sets", manuscript, Department of Mathematical Sciences, The Johns Hopkins University, (1988).
- [5] Pang, J. -S., "A B-differentiable Equation-based, globally and locally quadratic Convergent Algorithm for Nonlinear Programs, Complementarity and Variational Inequality Problems", *Mathematical Programming*, 51(1991), pp 101-131.

- [6] Park, K., "Continuation Methods for Nonlinear Programming", Ph. D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison, (1989).
- [7] Qui, Y. & Magnanti, T. L., "Sensitivity Analysis for Variational Inequalities Defined on Polyhedral Sets", *Mathematics of Operations Research*, 14(1989), pp 410-432.
- [8] Robinson, S. M. "Implicit B-differentiability in generalized equations", Technical Summary Report No. 2854, Mathematics Research Center, University of Wisconsin-Madison, (1985).
- [9] Robinson, S. M. "Newton's Method for a Class of Nonsmooth Functions", manuscript, Department of Industrial Engineering, University of Wisconsin-Madison, (1988).
- [10] Robinson, S. M. "Mathematical Foundations of Nonsmooth Embedding Methods", *Mathematical Programming*, 48(1990),pp 221-230.
- [11] Robinson, S. M. "An Implicit-function theorem for a Class of Nonsmooth Functions", Mathematics of Operations Research, 16(1991),pp 292-309.
- [12] Rockafellar, R. T., Convex Analysis, Princeton University Press, section 3, (1970).