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A Perturbation Based Method
for Variational Inequality over Convex Polyhedral

Koohyun Park*

Abstract

This paper provides a locally convergent algorithm and a globally convergent algorithm for a
variational inequality problem over convex polyhedral. The algorithms are based on the B
(ouligand) differentiability of the solution of a nonsmooth equation derived from the variational in-

equality problem. Convergences of the algorithms are achieved by the results of Pang[3].

1. Introduction

In the papers[l, 3, 5, 6, 9], the authors pre-ent systems of nonsmooth equations derived
from variational inequality problems. Robinson| 1] suggested a 'mormal map’ equation which
is equivalent to variational inequality problemrs. The normal map could be understood by
two ways. First, it is a composite map of f ¢« g where f is F(rechet)-differentiable and g
is Lipschitz continuous. Robinson[9] described a Newton’s method for the composite map
equation and Park{6] developed a Newton-My:ovskii type local convergence and a globally
convergent continuation method based on the local convergence. Robinson[10] obtained
conditions of homomorphism of the normal m:p which is essential to the globally conver-
gent continuation method. Second, the normal riap is B(ouligand)-differentiable. No methods
using B-differentiability for the normal map equation are known to us. But, Pang extended
the classical Newton’s method to B-differentiable systems of equations and he applied the
Newton’s method to the systems derived from variational inequality problems. Pang[4] also

briefly discussed the continuation method of th: Newton’s method.
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In this paper we apply the Newton’s metiod of Pang[3] to the normal map equation,
suggested by Robinson[11], which is equivalent to variational inequality problems. In
specializing the Newton method to a given B-lifferentiable equation, we need to solve a sys-
tem of nonlinear equations, called as a generalized Newton equation, for finding a direction at
each iteration. To solve the generalized Newton equation derived from the normal map, we use
the B-differentiability of the solution of the perturbed variational inequality problem defined
over a polyhedral convex set. The B-differentiability of the solution of generalized equation is
given by Robinson[8] and is rephrased by K:parisis for variational inequality problem over
polyhedral convex set in [2].

The rest of the paper is organized in three sections. In the next section, we review some
mathematical programming problems and their relationship. We also discuss the normal map
and B-differentiability. In section 3, we perturl the problem and obtain some useful results in
our method. Section 4 contains the algorithms and their convergences. Numerical examples are

in section 5.

2. Preliminaries

The variational inequality problem defined over convex polyhedral is to find ye CCR" such
that

<z=y, f3) > = 0 for all zEC={z€ R"| Az<b}

where f.R"—R" is continuously F-differentiable, A€ R™", and b€ R". < -, - > denotes the in-
ner product. Through this paper VI(C, f) dernotes the variational inequality problem defined
by C and f.

The variational inequality problem VI(C, f) has close relationship with several mathematical
programming problems. If C=R%, VI(C, f) is the nonlinear complementary problem to find y€
R" such that

y=0, fy)=0, <Ay), y>=0.

Define the normal cone of C at x by
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zl<y—x, 2> <0, ‘7yeC}, if xeC
Ndx) = g, if x&C

Then the generalized equation of
0€f+ Ny

is equivalent to VI(C, f).

Consider the nonlinear programming problem and let ¥* be an optimal solution.
Minimize S
Subject to  Aly) = 0
gly) < 0.
Then the following necessary optimality condition is satisfied at v*;

<z—y, VAy> >0 V zeC

where C={ze R"|<z—y*, Vg/3")> < 0, <z—3* Vh(*)> = 0} is the set of feasible directions
and the subscript I of V g: denotes the index :et of binding constraint g at y*. The above

necessary optimality condition is a VI(C, V f) where V f denotes the F-derivative of f.
We now introduce B-differentiability and directional differentiability of functions. Let G:R'—
R” be Lipschtz continuous. Then G is B-differentiable if there is a positive homogeneous func-

tion DG:R"—-R" such that

lim \Gx+h)—Glx)~ DGR/ | 1k | = 0.

The directional derivative of G(x) at x in the direction » is defined to the limit

G'xp) = /Z'f? GG+t - 0)—Glx)/T.

Pdx) denotes the projection of x on C and G(x)-:f(P{x))+x—Pd{x) is called the normal map.

Lemma 1 Let /: R — R” be continuously F-iifferentiable. Then
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G(x)=f(P{x)+x— PAx) is B-differentiable.

Proof. For given x€R", vER" and sufficiently small t > 0, there exists d€R" such that
P(x+7-v)=PAx)+r-d and PUxp)=d. clearly Pxw) is positively homogeneous in v. For
each v, w in R" and t>0, from the Lipschtz continuity of P.(-)

Plx+1 - 0)=Plx+rc-w)l < tlo—wl.
By dividing by 1 and taking 710 on both sides of inequality, we obtain
[Pex;v) —Pux;w)ll < [lv—wl.

Hence P'{x;-) is Lipschtz continuous. Now if we show DPJ{xw=P.xw), then PJx) is
B-differentiable and so is G(x). For any sequenc: {f.} that converges to 0, choose sequences {r.}
and {d.} such that A.=1.-d. where . {0 anc¢ |d.|=1 for n= 1, 2, -~-. Then there exists a

limit point &* of {d.}. Choose a subsequence {d. such that d.~>d*. For the subsequence {#},

lim {Px-+ha)— Pdx)~ P}l Vo]

={Z_ZCZ {Pc(x+1'm : dn])_Pc(x)—Plc(x;'[nj"dnj)}//”hn/H

. Platy,.d)-PW

:l.lm [ - P’c(x,dm)]
I Tnj
 Prtog,.d0-P@

=lim | — Pdx;d")]
Jox Tni

=Pdx;d")— PAx;d*)

Pang[3] presented another B-differentiable equation arised from VI(C. f). Let V H(y)=£().
Then the VI(C, f) is the necessary optimality condition of the following nonlinear program

with linear constraints;

Minimize H(y)
Subject to Az < b

With constraint qualification, the Kuhn-Tucker -onditions are

) +uA =0
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u>0, <u, Az—b> = 0, Az < b.
Hence he has the B—differentiable equations equivalent to the Kuhn—Tucker conditions:

) +u A =0
min {u, b — Az} = 0.

Lemma 2 Suppose 3* solves the VI(C, f). Then x*= 3*— f(3*) solves the normal map
equation f(P{x)) + x — Pdx) = 0. Conversel, if x* solves the the normal map equation,
then y*=PdJx*) solves VI(C, f).

Proof. For any solution y* of VI(C, f)

(z=y*, — fO*) = (z—y* x*— > < 0 V z€eC.
From the condition of normal cone, —f(3*) = x— y* € Nc (3. Hence P. () = y* and we
have x*= y*— fly*) =P. (x*) — A(P. (x*). Conversely from the definition of normal cone of C
at PA{x*), we have x*—Pdx*) € NAPJLx*)). Now et y*=P. (x*). Then the normal map equation
is f3") + x*— y*=0. Hence for all z € C,
(z—y*, — fy*h = ({z=y* x*— 3%
(2= Pdx"), x*—PLx*)
< 0. |

il

3. Perturbed Variational Inequality Problem

For any x€R", VI(C, —e+ f ) denotes the perturbed variational inequality problem; find y&
R" such that {(z —y.—e + fy) » = 0 for all ze C.

Lemma 3 For any x€ R", let ¢ = f(P{x)) + x- PAx). Then y=Pdx) solves VI(C, —e+ f).
Proof. Since x solves the equation of —e 4 AP. (x)) + x—Pdx) = 0, by Lemma 2
y=P. (x) is a solution of {2 —y,—e + Ay) > = 0 for all zeC. [ |

Through this paper we use the notations. For given x and e, let Flx, e)=f(Pdx)) — e + x
—Pdx). For a given x, let elx) = APAx)) + x-Pdx) and for a given e, let x(e) be the sol-

ution of F(x,e)=0. For a given e, let yle)
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be the solution of VI(C, —e+ f) and hence ¥() =Pdxle)).

Now we introduce the perturbation analysis of VIC, —e+ f) by applying the result of
generalized equation given by Robinson[8] to the variational inequality problem. This appli-

cation to the variational inequality problem over a polyhedral convex set is also found in [2,
4, 7].

Theorem 1 For a given ¢'€ R", suppose that V f(y(¢") is positive definite on C: — C: where
Ce = ZIGFG)), 20 = (& 2), A" 2 <0} and A" denotes the rows of the matrix A correspond-
ing to the binding constraints of Az <& at 3(¢’). Then there exist neighborhoods U of &', V
of y(ek), and Lipschtiz continuous functions y: {7 — V with the following properties
(a) for each e€U, yle) is the unique solution of VI(C, —e+ fy) in V;

(b) for each ecU, — yle)eCx

(¢) the function y(-) is B-—differentiable at ¢' with B—derivative v=Dyleu given as the
unique solution of VI(C:, gi) where gi=V Ayle' )y —u.

Proof. It is clear from Theorem 3.2 of [8]. n

In Theorem 1, Ci—C+ denotes the smallest subspace containing C: and it is defined by
Ce—~Cr=/ Xy x€Ch yeC: 1.

For the algebra of convex sets, please see secticns 2 & 3 of [12].
By using Theorem 1, we obtain the directional derivative of the solution xle) of Fix.e) = 0

. . . k k
in the direction —¢ at e

Lemma 4 For a given x', let & =A(P. (x") + x'—P. (x) and let v =Dy(e N —¢"). Then the
directional derivative of x(-) in the direction —¢' at &' is given by &*=Dx(e") (—)=v'—V f
(P. (XN -¢".

Proof. For each e, let yle) be a solution of VI:C,—¢ +#). Then from Lemma 2,
xle)=yle)—f¥le) + e.

By B—differentiating on both sides of the equsztion in the direction —e' at &', we have
d' = Dx(e)N~¢&")

Dy(e)N(—e)—V fiy(e) DyeN(~e)—e

V-V e . m

il
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Recall the generalized Newton equation for B—differentiable function introduced in [3]. Let
G: R" — R" be B—differentiable. Then

G + DGGHA = 0
is called the generalized Newton equation at x* for G(x)=0.

Lemma 5 Let Glx)=f(Pd{x)) + x—P. (x) and let &' =G(x"). Then d'=Dx(eN—¢&") solves the

generalized Newton equation at x' for G(x)=0.
Proof. Let Flx,e) = —e + G(x). Since d'=Dx(e'(—¢"),

0= F &' & ;—éh)
= D. F(x*, &)+ Dx F&x', &Hd*
=é + D—x Fi', &) d'
= G + DG . W

We now define a function m: ' — R" by

mx)=(1/2) I elx) I'=(1/2) | AP &) + x—P: (x) |.
Then x solves G(x) = 0 if and only if m(x)=0.

Lemma 6 d' is a descent direction of m(-) at x".
Proof. From the proof of Lemma 5, D: F (x", V' =—¢'. Consider the equation
elx)=e + Flx, e). By directional differentiating :n the direction d' at x* on both sides of the
equation, we obtain D.e(x')d*=D.F(x', ¢"d". And hence D.e(x)d' =—é'. Therefore

m' (' d) = elx") Delx)d'
= &(—¢)
=~ Je

(0 ife #0. =B
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4. Algorithms and Convergences

In this section we develop a locally convergent algorithm and a globally convergent algor-

ithm.

Algorithm 1
(step 0) Let x° be the initial guess of x* and # =0.
(step 1) Compute &' =APdx") + x'—P.(x.
(step 2) Compute the solution ¢* of VI(C:, gi) where

Ci={z | (AP. ("), z )=(&" 2). A" - < 0} and g=VAPENz + &

(step 3) Compute d'=v'—V APL ¢
(step 49) x"'=x' + @ and k=k+1. Go to (step 1).

In the global algorithm, (step 4) of Algorithra I is replaced by a line search step. For this
step we use Armijo—Goldstein step—size rule Let y > 0, #€(0,1) and o€ (0, 0.5). Then
x"'=x" + a-d" where a=8" -y, j(k) is the :irst nonnegative integer exponent such that m(x’)

—mx" + B y-dV> — - f m' (K ).

Algorithm II
(step 0) Let x” be the initial guess of x* and £=0.
(step 1) Compute &' =APLx") + x'— P
(step 2) Compute the solution v* of VI(C:, g+) where
Ce={z | (fAP. "), z Y=¢(e", 2), A" 2 < 0} and g=VAPLENz + &
(step 3) Compute d'=v'—V AP —¢&".
(step 4) (Line Search) x'" ' =x" + w-d" and % =£+1. Go to (step 1).

Theorem 2 In Algorithm I & II, if v*=0, then PAx) solves VI(C, /).
Proof. Since v»"=0 is a solution of VI(Ci g, we have
Cz2=0 , VAPLN -0+ & ) > 0,V z€Ch where
Ce={ z | (AP, 2z )=(e", 2), A" 2 < 0 }. That is, (z, &' ) > 0, V z€C.
Hence for all z€{ z | A" 2 < 0}, (2, & Y=(z AP ) < 0. Now let 2=PAx') + z then
we have { z — Pdx'), IPLx) ) < 0,V 26z | A2 <56} W
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We now have a locally quadratic convergence «f Algorithm 1. Let G(x)=AP{x)) + x—Pdx)

=0.

Theorem 3 Let x* be a solution of G{x)=0. Suopose that G is continuously F —differentiable
at x* and V G(x*) is nonsingular. Then there exists a neighborhood N of x* such that for any
initial guess x” in N, the sequence { x' } generatud by Algorithm I converges to x* If DG(-)
is Lipschtz continuous at x* then the rate of corvergence is quadratic.

Proof. It is clear from Lemma 5 of this paper and Theorem 3 of [3]. ]
We also have a global convergence of Algorithmr II.

Theorem 4 Let x” be any initial point in R". \ssume that
(a) { x| | ex) I < | ex” || }is bounded and
(b) for each k, VAPAx") is positive definite on %~ Ck.
Let { x* ! be any sequence generated by Algorithia II. Assume that G(x") # 0 for all k. Then,
() | e+ | < | e(x") I,
(ii) 1 x" } is bounded and
(iii) if x* is any accumulation point such that
(¢) I e(-) I * is F—differentiable at x* and
(d) there exists a neighborhood N of x* and a real number ¢ )0 such that for all zEN and
all veR", || Delx)v | = ¢+ 1 v Il. Then PAx*) is a solution of VI(C, f).

Proof. It is clear from Lemma 6 of this paper and Theorem 4 of [3]. ]
5. Numerical Examples
We consider the following linear variational inequality problem defined over convex poly-
hedral(VI(C, f)).
VIC, f) {z—y, fy) ) = 0 for all zeC
2y, —2

where f(y) = T =1 and C={ (2, 2)€R’ | 2z + 22 < 1,2 > 0, 22 > 0 }. Then as presented

in the Preliminaries this problem is equivalent to ‘he quadratic programming problem:
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Minimize ylz + 2y22—2y1—4y2

Subject to ¥ + ¥ <
n =03 20

We can solve this problem directly by applying Lemke’s algorithm. In fact, we suggest
Lemke’s alorithm for the linear variational inequality VI(C: g¢) in our Algorithm I & IL
Now we apply our Algorithm I to the linear variational inequality problem VI(C, ) though

our algorithms are developed for nonlinear variational inequality problems.

[Initialization]

(step 0) «°= 8 &k =0

[Iteration 1}

(step 1) ¥'= Pdx") = 8 ,

0 3 o o -2 0 0 —2
=)+t —y = gty - = 4
(step 2)
5 -2 A --2 2
Co={zeR|<_4,zz>=<_4,z2>,z120,z220}

I

{26R | 21> 0, 2 >0}

20 A& 4o 2z,—2
& = 04 P €7 4g,—4

VI(C., g.) is equivalent to the quadratic programming problem(QP.):

QP, Minimize 3 + 2y5 — 2y — 4
Subject to 3 > 0,y: = 0.

The solution of QP, is i , this is 2"

(step 3)

1 20 1 -2 1
d=1-04 1~ -4=1-
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(step 4)

o o 0 1 1
x=x + d = 0 + 1 = 1 -
[Iteration 2]

(step 1)
! L 1/ 2
y = Pdx) = 15 2

1 -1 1 12 -1/ 2
e =) +x-y= 9+ 71 -2 —32-

(step 2)

-1 2 -1/ 2 <
C1={Z€R24‘< _2,22 Yy =« _3/2,22 Y, 2+ oz <0}

= {zeR |z + 22 =0}

20 2.+1_221—1/2
817 04 5 T €T 4z-32-

VI(C, gV is equivalent to the quadratic prograruming problem(QP:):

QP Minimize vi + 2y — (120 — (32w
Subject to w1 + 32 = 0.

-1/ 6
The solution of QP is 1,/ 6 - this is v\

(step 3)
. -16 20 -16  -12 23
d = 116 ~ 04 1/6 ~ =327 1 -
(step 4)
RTINS SR

[Iteration 3]

(step 1)

y'= PAx) = % %

L

2 2 2 2 _4/3 53
eZZf(y)+x—y: w‘4/3%‘ /2 -

Sy
w W
i

oo
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By the proof of Lemma 6, ¢"=0 implies @'- (. Since I-VAP& = —3 is not zero in

1/ 3
this problem, v*=0. By Theorem 2 the current point y= 2// 3 1is the solution of VI(C, f).

6. Conclusions

This paper provides a locally convergent algorithm and a globally convergent algorithm for a
variational inequality problem over convex poiyhedral. The algorithms are based on the B
(ouligand) —differentiability of the solution of it nonsmooth equation, which is a normal map
equation derived from the variational inequality problem. The algorithms need to solve a
linearized variation inequality problem and the solution can be obtained by Lemke’s algorithm.
Even though the convergences of the algorithms are achieved in the case of F —differentiability
at the solution point by using the results of Pang[3], the algorithms are based on the
B —differentiability =~ of  solutions. ~The convergences of the algorithms  without
F —differentiability at the solution point are expected to be possible and this will be the fu-

ture research.
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