The aplication of fuzzy classification methods to spatial analysis

공간분석을 위한 퍼지분류의 이론적 배경과 적용에 관한 연구 - 경상남도 邑級以上 도시의 기능분류를 중심으로 -

  • 정인철 (경남계발연구원 교통·환경연구실) ;
  • Published : 1995.09.01

Abstract

Classification of spatial units into meaningful sets is an important procedure in spatial analysis. It is crucial in characterizing and identifying spatial structures. But traditional classification methods such as cluster analysis require an exact database and impose a clear-cut boundary between classes. Scrutiny of realistic classification problems, however, reveals that available infermation may be vague and that the boundary may be ambiguous. The weakness of conventional methods is that they fail to capture the fuzzy data and the transition between classes. Fuzzy subsets theory is useful for solving these problems. This paper aims to come to the understanding of theoretical foundations of fuzzy spatial analysis, and to find the characteristics of fuzzy classification methods. It attempts to do so through the literature review and the case study of urban classification of the Cities and Eups of Kyung-Nam Province. The main findings are summarized as follows: 1. Following Dubois and Prade, fuzzy information has an imprecise and/or uncertain evaluation. In geography, fuzzy informations about spatial organization, geographical space perception and human behavior are frequent. But the researcher limits his work to numerical data processing and he does not consider spatial fringe. Fuzzy spatial analysis makes it possible to include the interface of groups in classification. 2. Fuzzy numerical taxonomic method is settled by Deloche, Tranquis, Ponsard and Leung. Depending on the data and the method employed, groups derived may be mutually exclusive or they may overlap to a certain degree. Classification pattern can be derived for each degree of similarity/distance $\alpha$. By takina the values of $\alpha$ in ascending or descending order, the hierarchical classification is obtained. 3. Kyung-Nam Cities and Eups were classified by fuzzy discrete classification, fuzzy conjoint classification and cluster analysis according to the ratio of number of persons employed in industries. As a result, they were divided into several groups which had homogeneous characteristies. Fuzzy discrete classification and cluste-analysis give clear-cut boundary, but fuzzy conjoint classification delimit the edges and cores of urban classification. 4. The results of different methods are varied. But each method contributes to the revealing the transparence of spatial structure. Through the result of three kinds of classification, Chung-mu city which has special characteristics and the group of Industrial cities composed by Changwon, Ulsan, Masan, Chinhai, Kimhai, Yangsan, Ungsang, Changsungpo and Shinhyun are evident in common. Even though the appraisal of the fuzzy classification methods, this framework appears to be more realistic and flexible in preserving information pertinent to urban classification.

본 연구는 퍼지이론을 공간분석에 적용하기 위한 이론적인 배경을 고찰하고, 퍼지 분류법의 특성에 대해 살펴본 것이다. 이를 위해 필자는 공간정보의 모호성에 대해 살펴보 고, 퍼지공간분석의 전제를 설정한 다음 퍼지분류법을 소개하였다. 그리고 퍼지분류법의 특 성을 명확히 하기 위해 경상남도 읍급이상 도시의 산업별 고용비율을 대상으로 퍼지분류를 행한 후, 퍼지분류와 전통적인 군집분석의 결과를 비교하였다. 그 결과, 공간정보의 모호성 은 구체성의 부족, 인간행태, 인내치문제, 분류기준의 부족 등에 의해 발생하는데 기존의 공 간분석기법으로는 공간의 모호성을 반영할 수 없으므로 퍼지기법을 도입한 퍼지공간분석의 필요성이 있음을 확인하였다. 퍼지분류법 중, 퍼지이산분류는 계산절차는 상대적으로 간단하 나 분류결과가 집단간의 점이성을 고려하지 못하며, 퍼지중첩분류는 분류집단간의 점이성은 고려하나 분류결과가 지나치게 많아 적절한 분류수준을 선택하기 어렵고 결과해석이 상대적 으로 난해하다는 문제점이 있음이 밝혀졌다, 또 경남의 도시기능분류는 분류기법에 따라 다 르게 이루어졌지만 창원, 울산, 마산, 진해, 김해, 양산, 웅상, 장승포, 신현으로 구성된 제조 업 군집과 단독군집 충무의 존재가 세 가지 분류 모두에서 공통적으로 확인되었다.

Keywords

References

  1. 한국도시연감 내무부
  2. 국토계획 v.16 no.2 군집분석을 이용한 권역설정 김동주
  3. 한양대학교 산업공학연구소 논문집 v.37 우리나라 읍도시의 도시시설특성 연구 문정희;권인근
  4. 대한지리학회지 v.29 no.3 CHAID기법에 의한 도시기능의 시론적 연구 양순정
  5. 퍼지이론 엄정국
  6. 동아대학교 부설 해양자원연구소 연구보고 v.1 주성분분석법에 의한 우리나라 도시의 유형화에 관한 연구 윤시운;고상선
  7. 국토계획 v.14 no.2 한국도시(서울, 부산 및 5개 거점도시)의 기능, 형태 및 구조에 관한 연구 윤정섭;이기석;최병기
  8. 퍼지이론 및 응용 이광형
  9. 중앙대학교 전자계산학 박사논문 다속성 의사결정 시스템의 퍼지 모델링 이상준
  10. 국토계획 v.29 no.2 도시의 기능과 토지이용상황에 의한 도시분류체계에 관한 연구 이우종
  11. 도시 · 촌락조사법 홍경희
  12. Geogrephical Analysis v.11 An axiomatic approach to geographical space Beguin,H.;Thisse,J.F.
  13. Philosophy of Science v.4 Vagueness: An exercise in logical analysis Black,M.
  14. Theorie des possibilites Dubois,D.;Prade,H.
  15. Synthese v.30 Wang's paradox Dummett,M.
  16. Biomntrics v.35 Unresolved problems in cluster analysis Everitt,B.
  17. Photogrametric Engineering & Remote Sensing v.58 no.2 A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: an example from Landsat beath Foody,G.M.
  18. Les interactions spetiales eneconomie Fustier,B.
  19. Int. J. Man-Machine Studies v.19 Precise past-fuzzy future Gaines,B.R.
  20. Philosophy in Geography On the set theoretic foundations of the regionailzation problem Gale,S.;Atkinson,M.;S.Gale(ed.);G.Olsson(ed.)
  21. Int. J. Geographical Information Systems v.6 Geographical information science Goodchild,M.F.
  22. The Language of Planning: Essays on the Origins and Ends of American Planning Thought Guttenberg,A.
  23. Philosophy of Science v.6 Vagueness and logic Hempel,C.G.
  24. Introduction a la theorie des sous-ensembles flous Kaufmann,A.
  25. The philosophy of mathematics Korner,S.
  26. Environment & Planning v.A,16 Towards a flexible framework for regionalization Leung,Y.
  27. GIS/LIS, Conference and Exposition On the incorporation of uncertainity into spatial data systems Lowell,K.
  28. PhD thesis University of Grenoble Contribution a l'Algorithimique non numerique dans les ensembles ordonnees Pichat,E.
  29. Analyse economique spatiale Ponsard,Cl.(et al.)
  30. Environment & Planning v.A,17 Fuzzy economic regions in Europe Ponsard,Cl.;Tranqui
  31. L'analyse quantitative en Geographie Racine,J.B.;Reymond,H.
  32. Zeitschrift fur allgemeine Wissenschaftstheorie v.11 Black and Hempel on vagueness Rolf,B.
  33. Journal of Philosophical Logic v.8 A theory of vagueness Rolf,B.
  34. PhD. Thesis, Lund Topics on vagueness Rolf,B.
  35. Sistemi Urbani Fuzzy data processing 1: concepts, formalization and statistical indices Rolland-May,C.
  36. Espace Geographique La theorie des sousensembles flous et la geographie Rolland-May,C.
  37. Australasian Journal of Philosophy v.1 Vagueness Russel,B.
  38. Les regions economiques flous. Application au cas de la France Tranqui,P.
  39. Photogrametric Engineering & Remote Sensing v.56 no.8 Improving Remote Sensing Image Analysis through Fuzzy Information Representation Wang,F.
  40. Synthese v.30 On the Coherence of Vague Predicates Wright,C.
  41. Proceedings of Institution of Radio Engineers v.50 From circuit theory to system theory Zadeh,L.A.
  42. Information and Control v.8 Fuzzy Sets Zadeh,L.A.
  43. Fuzzy set theory and its applications Zimmermann,H.J.