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Comparison of Parallel Preconditioners for Solving Large Sparse

Linear Systems on a Massively Parallel Machine

Sang Back Ma !

ABSTRACT

In this paper we present two preconditioners for solving large sparse linear systems arising
from elliptic partial differential equations on massively parallel machines, such as the CM-5.
Most massively parallel machines do heavily rely on the message-passing for the interprocessor
communications, but according to the current manufacturing standards the cost of communica-
tions is very high compared to that of floating point arithmetic computations. Due to this we
need an algorithm which minimizes the amount of interprocessor communication on the massive-
ly parallel machines. We will show that Block SOR (SuccessiveOverRelaxation) method coupled
with the multi-coloring technique is one of such preconditioner on the massively parallel ma-
chines, by conducting experiments on- the CM-5. Alsg, we implemented the ADI
(AlternatingDirectionImplicit) method on the CM-5, which has been conventionally one of the
most powerful parallel preconditioner. Qur experiment shows that Block SOR method coupled
with the multi-colering technique could yield a speedup with 50% efficiency with the range of
number of processors from 16 to 512 for a matrix with dimension 512x512. On the other hand,
the ADI method shows a very poor performance.

E8| #Ho| s

535

1. Introduction

Discretizations of elliptic PDE(Partial Dif-
ferential Equation)s by FDM(Finite Differ-
ence Method) or FEM(Finite FElement Meth-
od) in two and three dimensions lead to
large sparse linear systems. Solving this lin-
ear system by conventional Gaussian elimina-
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tion requires a prohibitive amount of memory
and CPU time, especially on three dimensions.
One alternative has been iterative methods,
such as SOR[14], CG(ConjugateGradient)[1],
or GMRES (Generalized Minimal RESidual)
[10] method. Also, it is well known that pre-
conditioning the given linear system Ax = b,
by premultiplying the given linear system A
x =Db by a matrix M, M A x = M b, is
very effective in reducing the total amount
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of computations for a suitable choice of the
preconditioning matrix M. There has been a
lot of research on the preconditioner, and
ILU0Y[7] is one of most

preconditioner. However, most preconditioners

popular

are inherently serial, which leads to look for
paré.llel preconditioners for various types of
contemporary parallel computers.

ADI method is attracting new attentions
due to its suitability to parallel computations.
[ts advantage is the linear solution of the
tridiagonal system in H and V parts can be
done in parallel. This method is very effective
for a vector machine, such as the CRAY
XMP, or CRAY-2, and its implementation is
very straightforward. However, on message-
passing machines such as the CM-5, we be-
lieve the ADI method suffers from the high
amount of communications, and the methods
such as Multi-Color Block SOR will have a
superior performance than the ADI method.

2. ADI method

Finite difference or finite element
discretizations of the following partial differ-

ential equation (PDE)

(K(z Dud— (Klx pux),+(dz, y)ud«+

(ex, YIu),+Ax Pu=glx, ¥)
0=[0,11x[0,1] €D
u=0 on 8%

with meshsize h=1/(n+1) give rise to a

linear system
Au=b (2

of order N=nx #, where the the matrix A
is a sparse matrix. The matrix A is
nonsymmetric due to the presence of the
terms of first order derivatives. In case of fi-
nite difference method(FDM) with standard
central difference for the first-order deriva-

tives, we could split, A=H+V+2], where H
and V comes from the discretizations in x
and y directions, respectively, and %) comes
from the term f in Eaq. (1). For Eq. (1) we
decompose A as A=H+V,+2, where X
come from the fu component, and H, V, are
the contributions from the z, and y direction-
al derivatives, respectively. With H= H,+(1/
2%, and V=V,+(1/2)Z, PR-ADI (P
eaceman- Rachford ADI) method could be
defined as '

(H—i—pz’Duiwz:—(V—pibqu (3)
(V+pz'])uz'ﬂ=—(H—piDui+1/z+b (4)

where u, is an arbitrary initial] vector ap-
proximation of the solution of Egq. (1), and
{p#i=0} are positive constants called accel-
eration parameters, which are chosen to
speedup the convergence of this process.
Each of Eq. (3) and (4) form #u sets of lin-
ear system of order » where the » linear
systems are completely decoupled. Further-
more, the matrices H and V could be made
tridiogonal “with proper reordering. For exam-
ple, under natural ordering in x direction H
is tridiagonal, and with natural ordering in y
direction ¥ could be made tridiagonal. This
ensures a minimum degree of parallelism of
n, which makes PR-ADI attractive in par-
allel computations. Also we note that Gaussi-
an elimination method for the tridiagonal lin-
ear systems is very effective in terms of
costs.

3. Multi-Color Block SOR method
3.1 Block SOR/SSOR methods

To define the Block SOR(Successive
OverRelaxation) methods, we start by parti-
tioning the NxN matrix A into the blocks as
follows:
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A,l Al_z b Ax n
A — 1:42.1 1:42.1 ‘T -{hn
Anl Aﬂ.z A A).n

We assume that each diagonal block A:is, 1
< i<y, is a nonsingular matrix.

From the above partitioning we define the
nxn block-partitioned matrices D, E, and F
as

A if =5

0, otherwise

D‘.;‘:{

Similarly, let E and F denote the
lowertriangular and uppertriangular blocks,
respectively, so that A=D+E+F. To solve
Ax=b we define the Block SOR method as
follows.

Algorithm Block SOR(BSOR)

1. Choose z,

2. For 1)0, ..., until Convergence Do
(D-wB)zx a1=((1—w)E+wPFax+wd
Block SSOR(SymmetricSuccesiveQverRelaxati-

on) method is defined as follows.

Algorithm Block SSOR(Symmetric
Successive OverRelaxation)

1. Choose x, ‘
2. For i)0, ..., until Convergence Do

(D—wE')x,.,r_%_=((1-w)E+wF).ri+wb

(D—wE).:riJr_i_:((l-w)F+wE).ri+_i_+wb

w is called the relaxation parameter for ac-
celeration of convergences, and usually cho-
sen between 1 and 2. For diagonally domi-
nant matrices, for example, the Block SOR/
SSOR method is known to converge, if w is
-between 0 and 2[14].

In this paper we assume that the domain is
a square, which is further divided into p rec-

tangle-shaped blocks, where p is the number
of the available processors. Further we as-
sume In the most natural form as in (Fig. 1)
that there is a one-to-one correspondence be-
tween the p blocks and p processors.

3 | — Ry L] p— 2%

! |
b

AR ] 2

3l-node partition  256-node partition

(Fig. 1) Mapping between a squere domain and proc-
assors

3.2 Multi-color reordering

Given a mesh, multi-coloring consists of
assigning a color to each point so that the
couplings between two points of the same
color are eliminated in the discretization ma-
trix. For example, for the 5-point Laplacian
on a square with two colors in a checker-
board fashion we can remove the coupling be-
tween any two points of the same color, so
that the values at all points of one color can
be updated simultaneously, Similarly, four col-
ors are needed to color the grid points of the
same color of the 9-point Laplacian. Howev-
er, it has been known that the convergence
rate for the reordered systems often deterio-
rates[4]. For the model problem SSOR and
preconditioned-CG  with the 2-color(Red/
Black) ordering have a worse convergence
rate than with the natural ordefing, while
SOR has the same rate if the optimal w is
used. The following {Table 1) contains the
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rates of convergence for SOR, SSOR, and
ILU(0) preconditioned CG methods with natu-
ral and red/black ordering for the 5-point
Laplacian matrix, when optimal 0 is used.

(Table 1) Rate of convergence when reordering is
used. h ig the meshsize.

SOR |SSOR| ILU-CG

Natural Ordering O |O(R) | OWE)

Red/Black Ordering | Q%) |O(F) | O(h)

For the nine-point Laplacian with properly
selected w the convergence rate of SOR re-
mains the same as with the natural ordering.
Q' Leary[8] has considered several other or-
dering schemes for the 9-point Laplacian and
has shown that the cornvergence rate of SOR
lteration is no worse than that of the natural
ordering. This is the reason behind our choice
of Block SOR preconditioner in combination
with the multi-color reordering.

Pn

| 2N I I e
P

P1 P2 Pn
Block row mapping Fleck column mapping

{Fig. 2) Block row/colurnn mapping
4. Communication Costs

Let us consider the ADI method again.

(H+PiDMi+1/2:_(V*PiDZ¢f+b (5)
(V+PfDu“+x:—(H+(3"Dui+1,z+b (6)

Each of Eq. (5) and Eq. (6) has = inde-
pendent linear systems, providing minimum
parallelism of n. The implementation of ADI
on machines with shared memory will be
straightforward.

For example, on a single CPU of CRAY-2
as long as n exceeds 64, the vector length,
satisfactory performance could be obtained.
For message-passing machine the comrmunica-
tion poses a problem. Let us consider the CM
—-5. Assume that the
mapped  into

N=nxn grid is
N1<i<p, by
Block Row/Column mapping as in (Fig. 2),

pProcessors,

ie., passing to the processor M, the n/p con-
secutive lines of nxn grid. For the MC-
BSOR(Multi-Color Block SOR) method we
used the form in the Multi-Color Block SOR
method of Chapter 3 in [4]. Also, rather
than iterating until convergence we iterate /
times without checking the error criterion.
We call this variant of MC-BSOR and ADI
as MC-BSOR(/) and ADI(J). (Table 2) com-
pares the communication related works of
ADI{/) and BSOR(/). We note that the order
of magnitude of the communication work of
ADI is higher than that of the MC-BSOR(/).

{Table 2) Comparisons of communication related work
per one preconditioning step

communication| data amount
start-ups | to be passed
ADICD 4] o)
MC-BSOR(D I OWN)

5. Overview of the CM-5

The Connection Machine(CM-5) from the
Thinking Machines Corporation is a message-
passing machine designed to support both
SIMD and SPMD modes. The basic com-
ponents of the CM-5 include hundreds or
thousands of processing nodes, each with its
own memory, one or Iore control processors,
two global communication networks, high
bandwidth I/O subsystems, and mass storagé
devices, eg., the data vault.

A CM-5 computer is divided into several
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partitions. There is a separate processor,
called control processor(CP), for each parti-
tion. A control processor is essentially like a
standard high-performance workstation com-
puter. It consists of a standard microproces-
sor, a SUN SPARC chip, separate memory, a
network interface(NI) providing access to the
communication networks, and other devices
and interfaces. A control processor acting as
a partition manager(PM) controls each parti-
tion and communicate with the rest of the
system through the communication networks.

Every control processor and parallel pro-
cessing node in the CM-5 is connected to
two scalable interprocessor communication
networks, the control network(CN) and the
data network(DN). In general, the CN is
used for operations that involve all the proc-
essors at once, for example, operations such
as synchronizing and instruction broadcasting.
The data network is used for bulk data
transfers where data has a single source and
destination. The CN also contains integer and
logical arithmetic hardware for carrying out
reduction operations, where every processor
provides a value and all values are combined
by the CN to produce a single resuit.

(Fig. 3) A 4-node hypertree and its simplified repre-
sentation

The PNs are interconnected in a tree-like

structure, as in (Fig. 1)-(Fig. 2). The parent

nodes themselves are not PNs but Data Rout-

er(DR)s, and as we go up the level of the

tree the communication channel capacity in-
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creases. This feature overcomes the usual
communication bottleneck that often charac-
terizes tree structures. In theory, the DN pro-
vides enough bandwidth for every network in-
terface(NI) to sustain data transfer rates of
20Mbytes per second to any other NI within
its group of four;10 Mbytes to any other NI
with its group of 16; and 5 Mbytes per sec-
ond to any other in the system. Thus, the
best to worst performance ratio is a factor
of at most 4.

4Folded DR

(Fig. 4) A 16-Node hypertree

At any time a processor may send a mes-
sage to any other processor in the user task.
This is done by first writing the destination
processor number, and then the data to be
sent, to the control registers in the NI. Once
the DN has accepted the message, it assumes
all responsibility for the delivery of the mes-
sage to its destination. Moreover, the opera-
tion of the DN is independent of the PN’s,
which may carry out unrelated computations
while the messages are in transit.

In the Single-Program-Multiple—Data
(SPMD) mode on the CM—5, each PN holds
an identical copy of the same program, called
the node program, and executes its own copy
concurrently.

But, unlike data parallel(SIMD) mode, dif-
ferent PNs can take different execution
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branches. The host processor can execute a
separate program independently. Data are ex.
through the DN.

synchronization is automatically performed at

changed Interprocessor
points where processors are expected to com-
municate.

The CM-5 at Army High Performance
Computing Research Center(AHPCRC), has
544 vprocessing nodes, 5 control processors,
and 120 Gbytes of mass storage. Each pro-
cessing node has a 33 MHz SPARC proces-
sor from SUN Microsystems, 32 Mbytes of
memory and 4 vector paths. The 544 PNs
can be configured into two partitions of 512
and 32 PNs or three partitions of 32, 258,
and 256 PNs. At the time when the experi-
ments in this thesis were conducted wvector

units were not available.
6. Experiments

We consider the Elman problem on square
grids in two dimensions. We discretized the
problems wusing centered finite difference
discretizations for FDM discretizations. The
mesh sizes vary from test to test and are re-
ported independently in this section. diago-
nals.

- Elman’s problem [1]

= (bux)x— (cuv) v+ (du) x+ (ew) v+ fu=
Az v
£=[0,11x[0,1] (9
u=0on & L

where b=exp( —xy), c=exp(xy), d=Fx+7%), e
=r(x+y), f=1/(x+y), and g is such that
exact solution u=x exp(xy) sin(mx) sin(zv)

The FGMRES(flexible GMRES) routine[11]
allowing variable preconditioner at each itera-
tion was used with m=10, ¢=10"°% for the

outer iteration, where m is the dimension of
Krylov subspace associated with the GMRES
method.

For our implementations on the CTM-5 we
have adopted the SPMD mode over data par-
allel mode. The reason is that the matrices
coming from FDM or FEM have a special
structure originating from the underlying
physical problems. The communication pattern
required by operations on such matrices, such
as the matrix-vector multiplications, will take
advantage of such a special structure.

The blocks were divided so that they are
as close 10 squares as possible, to minimize
the communication costs. All the communica-
tions were done with the ¢cmmd_swap primi-
tives, because swapping is expected to be
more efficient than separate send and re-
ceive[15].

However, due to the blocking nature, ie,
computation cannot go past the point of com-
munications unless all the communications as-
sociated with that point are finished, dead-
locks during the process of communication
could happen. Since the original matrix A is
structurally symmetric, this deadlock can
avoided be by sorting the neighboring proces-
sors in an ascending order.

The number of colors needed for this ma-
trix is 2, hence in this case Multi-Color
BSOR reduces to the usual Red/Black SOR
method. (Fig. 5) and (Fig. 6 ) compare Mulii
—-Color BSOR(/) versus ADI(]), and [=2,5
with rectangular blocks of equal sizes. In(Fig.
5)the timing of the ADI(5) for number of
processors, 256 and 512, were not reported,
since it didn’t finish within reasonable time.
Timing was not measured in dedicated time,
s0 it bears some inaccuracies due to the
system load. w=1.2 was used through the ex-
periments for Multi-Color BSOR(1) method,
for simplicity. However, as we noted earlier
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there 1s no simple way of finding the optimal
in advance, and fortunately the performance
of the SOR method is known relatively insen-
sitive to the value of o[14].

- 7
M. Baar(sy
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MG Harar{1)
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(Fig. 5) Elman problem with FOM, =50, £=1. with
FGMRES(10), N=256x256.
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(Fig. 6) Elman problem -with FDM, y=50, g=1, with
FGVRES(10) N= 512 x §12.

The number of available processors is 32,
128, 256, and 512. For 32 processors ADI(/)
gives a better performance than Multi—Color
Block S0OR in terms of the total CPU time.
However, as the number of processors in-
creases the performance of ADI(/) worsens.
In fact, for ADI(/) with a given problem, the
CPU time increases with higher number of
processors, which implies that speed-up is
always smaller than 1.

Note that for a given problem the number
of iterations increases with Multi-Color Block
SOR, since the block size changes with num-
ber of processors, which also changes the
convergence rate itself.

(Fig. 7) shows the speed-ups of FGMRES
(10) with MC-BSOR(1) preconditioner on
32, 128, 256, and 512 PNs. The speed-up

=

I
]
Ml

was measured relative to 32 nodes. For N=
512* the speed-ups behave linearly for both
problems.

Speeaup
Y

12 - N=gs12"*2

N=256+"2

H=1z2

= 128 289 2 # of procasecrs

(Fig. 7) Speed—up of FGMRES(10) /MCBSOR(1) for
Elman problem, =850, =1, =12

These figures show linear speed-ups when
the problem size is large enough relative to
the number of PNs. This indicates that Multi
~Color Block SOR(1) might have a good po-
tential as a parallel preconditioner for the
general case.

7. Conclusion

On our CM-5 experiments ADI(1) method
suffers from the need for a high amount of
communication. On a message-passing ma-
chine like the CM-5, Multi-Color Block SOR
(1) method outperforms the ADI(/) method
due to the high communication costs. For a
matrix with the size of 512 x 512 we were
able to get speed-ups of p/2(50% efficiency)
relative to the case when p=32, with Multi-
Color Block SOR method. On the other hand,
the speed-up of ADI method is less than 1,
for any number of processors.

On a message-passing machine we need to
develop an algorithm which minimizes the
amount of data movement between proces-
sors. Block SOR method combined with Multi
-Color reordering technique were able to pro-
duce a speed-up curve of 50% efficiency for
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our test problem from a partial differential
equalion.
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