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EXISTENCE OF HOMOTOPIC HARMONIC MAPS
INTO METRIC SPACE OF NONPOSITIVE CURVATURE

JEON, MYUNG JIN

ABSTRACT. The definitions and techniques, which deals with homotopic
harmonic maps from a compact Riemannian manifold into a compact
metric space, developed by N. J. Norevaar and R. M. Schoen [7] can
be applied to more general situations. In this paper, we prove that
for a complicated domain, possibly noncompact Riemannian manifold
with infinitely generated fundamental group, the existence of homotopic
harmonic maps can be proved if the mitial map is sunple in some sense.

1. Introduction

The theory of harmonic maps is a kind of optimization problem. So
the existence of such maps is of basic importance in the theory of har-
monic maps. In this paper we study the existence of harmonic(locally
energy minimizing) map which is homotopic to a given map into a metric
space.

There are several results on the existence of harmonic maps between
Riemannian manifolds following the work of J. =Zells and J. H. Sampson
[3]. Recently, people have become interested in the analysis on metric
spaces(or on the Alexandrov space that are Gromov-Hausdorff limits of
Riemannian manifolds) and there have been sonie progress in developing
generalized notions of energy and harmonicity (see [3], [6], [7]).

Korevaar-Schoen[7] generalized the Sobolev theory for maps from a
Riemannian manifold into a metric space and defined the energy by us-
ing the convergence of the ¢ energy density measure. In [7], the follow-
ing three kinds of existence theorems have been proved for harmonic
maps into metric spaces. They defined nonpositively curved metric
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space(NPC) using the triangle comparison in global sense. We, how-
ever, see the curvature as a local property and will use the notion of

CAT(0) space as defined in [2].

THEOREM A (DIRICHLET PROBLEM; [7]). Let (Q, ¢) be a Lip-
schitz Riemannian domain (a relatively compact, connected, open subset
with Lipschitz boundary of a Riemannian manifold, and let (X,d) be
a CAT(0) metric space. Then for any ¢ € W12, X), there exists a
unique v € W"%(Q, X) which is stationary for the p=2 Sobolev energy
with the property tr(u) = tr(¢).

THEOREM B (EQUIVARIANT MAPPING PROBLEM; [7]). Let M be a
complete Riemannian manifold with finite volume and M be the univer-
sal covering mainfold of M and let X be a CAT(0) metric space. Let T’ =
71 (M) be finitely generated and p: T — isom(X) be a homomorphism.
Then there exists an equivariant minimizing sequen-e {u; : M — X}
which has local modulus of continuity control. That is, for each » € M
we assume there is an (equivariant) function w(x.r) (0 < r < r,) which
is monotone increasing in r, which satisfies w(x,0) = 0 and so that

sup  sup dlug(x), wi{z)) <wla,r)
-z
Furthermore the sequence {u;} converges (locally uniformly and hence
in L}, ) to an equivariant harmonic map u if and onlv if there exists an
z € M at which the sequence of points {u;(z)} is convergent.

Using Theorem B, they constructed an equivariant minimizing se-
quence {u; : M — N}, which is equicontinuous, from a compact Rie-
mannian manifold A{ to a compact metric space of nonpositive curvature
N and proved the following theorem by the existence of Dirichlet prob-
lem(Theorem A).

THEOREM C (HOMOTOPY PROBLEM: [7]). Let M be a compact Rie-
mannian manifold without boundary and let N be a compact inner met-
ric space with CAT(0) universal cover X. Then for any continuous map
f:+ M — N there exists a Lipschitz harinonic map v - M — N which is
homotopic to f.

It turns out that the similar techniques can be applied to more general
situations. In fact, we can consider the equivariant maps defined on a
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regular cover M of M with the action of quotient group m1(M)/m1(M)
which is finitely generated, and construct an equivariant minimizing se-
quence {u; : M — X} which has local modulus of continuity control and
the same criterion of convergence.

Using this equivariant minimizing sequence {u; : M — X}, we can
prove the following more general result on the existence of harmonic
maps from a Riemannian manifold(possibly noncompact) to a compact
metric space of nonpositive curvature.

MAIN THEOREM. Let M be a complete Riemannian manifold with fi-
nite volume, without boundary and with a normal subgroup H <1 m (M)
so that I' = m(M)/ H is finitely generated. Let N be a compact geo-
desic space of nonpositive curvature.

Then for each continuous map f : M — N with fy(H) = 0, there
exists a Lipschitz harmonic map v : M — N which is homotopic to f.

2. Preliminaries

The energy E of a map u : M — N between two Riemannian mani-
folds M and N is defined by

E* 2/ |du|*dy,
M

where |du| is the Hilbert-Schmidt norm of the differential du € T*M ©
u*TN and dp is the measure given by the metric on M.

When we think of a map with metric space target, the above definition
i1s no more valid. The difficulty is in the fact :hat the target space N
has no differential structure.

There are some generalizations of the energy (see [5], [6], [7]). Among
them, we recall the definitions in [7].

Let M be a complete Riemannian manifold and (N. d) be a complete
metric space. The space L2( A, N) is defined by

L*M,Ny={u: M — N|/ d*(u(r).Q)du(x) < oo for some @ € N}.
M
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Then L?(M, N) is a complete metric space with the distance function D
defined for each u,v € L%(AM, N) by

Dz(u,v)=/ d*(u(x), v(x))du(x).
M

For a map v € L?*(M,N) and ¢ > 0. define

n(y))

C

e(x,y)=

where (z,y) € M x M. Averaging e.(x,y) spherically and radially, we
can define ¢ — approzimate energy density

do’; /\\_( )
/ /su " Ere(@,y)———== D)= dv(A).

where S(z, Ac) is the sphere centered at r of radius Ag, doz e 1s the
surface measure on S(x, Az) and » is a Borel measure on the interval
(0,2) satisfying

2

v >0, v((0,2) = 1,‘/-A~2duﬂ\)<ixn
0
The ¢ — energy functional ,E. : C.(M) — R is defined by
VEAf) = [ flolednidute), f e Coa)

The Sobolev space W'2(M, N ) is defined by
WM, N) = {v € L*(M,N)|,E* < oo},

where

+EY = sup (lim sup E;‘(f)) .
JeC (M) £—0
0<f<
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The Sobolev space W?(M, N is a metric space as a subspace of L%( M,
N). i.e. the topology of W1?(M, N) is given by the distance D. It was
shown that for v € W12(AI, N) each measure vee()du(x) converges
weakly to the same energy density measure de having total mass ,E*
so that

E*(f) = E"(f) = lim ,Ec(f) for all f € Co(M).

Furthermore, the energy density measure de is absolutely continuous
with respect to Lebesgue measure du so that

de(x) = |Vula(x)dp(a)

for some function [Vu|, € LY(AL.R). The wnergy functional E®
Cc(M) — R is defined by the measure

1
|Vul?(a)du(x) = —|Vu|s(2 dp(a),
wn

where w, = vol(§"7!) for the consistence with the Riemannian case.
The energy E* of u is defined by

:/ IVul*(2)du(x)
M
if it is finite.

Now we recall the definitions of CAT(0) and nonpositively curved
metric space (vef. [2], [4], [8]). A metric space (X,d) is said to be a
geodesic metric space if every pair of points in X can be joined by a
distance realizing curve, i.e. a curve with length equal to the distance
between two end points. A geodesic segment in X is a unit speed
parametrization of such a curve. A geodesic triangle A in X is a triple
of points P, @, R € X together with a choice of three geodesic seg-
ments, one joming each pair of vertices. A coraparison triangle for A
is a triangle A in the Euclidean plane E? mtlx vertices P, @, R such
that d(P,Q) = d(P,Q), d(Q,R) = d(Q, R), RP)—-dRP)(suchan
Euclidean triangle is unique up to isometry). A length space X is said
to satisfy the CAT(0) inequality globally (or "X is said to be a CAT(0)
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space’) if and only if for any three points P, @, R in X and choices
of geodesics yp g (of length r), 7 r (of length p), yr,p (of length ¢),
connecting the respective points, the following comparison property is

to hold:

For any 0 < A < 1, write @ for the point on yg r which is a fraction A
of the distance from @ to R. That is,

d(@Qx,Q) = Ap, d(Qx,R) = (1 - A)p.

On the comparison triangle of side lengths p, ¢, r and opposite vertices
P, Q, R, there is a corresponding point

Qx=Q+ MR -Q).

such that the metric distance d(P.Q\) is bounded above by the Eu-
clidean distance [P — Q.| 1.e.

d(P,Qx) < |P - Q)

The nonpositive curvature condition is a local property. That is, a
geodesic metric space X is of nonpositive curvature if and only if the
CAT(0) inequality holds locally, i.e. for each point P € X there is
a neighborhood U of P such that the CAT(0) inequality hold for any
triangle in U. For example, the circle and net is of nonpositive curvature
but not CAT(0) because they are not contractible.

CAT(0) space is a space of nonpositive curvature and complete sim-
ply connected geodesic metric space of nonpositive curvature is a CAT(0)
space(see [1]). The covering space of a geodesic metric space of nonpos-
itive curvature is also a geodesic metric space of nonpositive curvature.
So the universal covering space of a geodesic metric space of nonpositive
curvature is CAT(0).

3. Existence results

Let M be a complete Riemannian manifold, possibly with smooth
compact boundary M and let M be a regular covering manifold of M
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with the projection p : M — M. In other words pym1(M) is a normal
subgroup of the fundamental group 71(M) where py : 71 (M) — w1 (M)
is the induced homomorphism from p. Then the quotient group T’ =
71(M)/ pym1(M) acts on M properly discontinuously and freely.

Let X be a complete metric space and p : T’ — isom(X) a homomor-
phism. A map u: M — X is said to be p — equivariant if

u(yx) = p(v)u(x) forallx € M and y € T.

An equivariant map u is said to be harmonic if it is (locally) a Sobolev
map and if it is stationary for the energy(locally energy minimizing)
defined for locally Sobolev, equivariant v : M -+ X by

E":/ Vol dp.
Al

This integral is well defined from the T-invariance of the energy density
as long as M has finite volume.

For the existence of equivariant harnionic maps in this situation, one
can use the direct method. In case M is the universal covering manifold
and T is finitely generated, Korevaar-Schoen shiowed the existence of p-
equivariant, locally Lipschitz map v : A — X using the center of mass
construction. More generally, when }{ is a regular covering manifold we
can prove the the existence of p-equivariant, locally Lipschitz map using
the center of mass construction.

PROPOSITION 3.1. Let M, M, T, p be as alove with T' being finitely
generated, OM = ¢ and let X be a CAT(0)- space(ref. [1]). Then there
exists a p-equivariant, locally Lipschitz map v : M — X with the locally
bounded Lipschitz constant.

Moreover, by the analoguous argument as in [7], we can prove the
existence of energy minimizing. Lipschitz, p-equivariant sequence {u;}
defined on a regular covering manifold 3.

THEOREM 3.2, Let M Dbe a complete Riemannian manifold with finite
volume without boundary and p : M — M be a regular covering of
M such that T' = 7w (M)/p;m (M) is finitely generated. Let X De a
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CAT(0)-space and p : T — ison{X) be a homomorphism. Suppose the
set of finite energy p-equivariant maps from M to X is nonempty.

Then there is an equivariant minimizing sequence {u; : M — X}, so
that for any compact subset N’ C M and i sufficiently large (depending
on K), the u, is Lipschitz continuous on (the lift in M of) K.

REMARK 3.3. In case of equivariant maps on regular covering man-
ifold, the same criterion holds for the convergence of Lipschitz equi-
variant minimizing sequence as in [7]. In fact, the convergence at one
point guarantee the convergence of the sequence of maps because it is
an equicontinuous family.

Now we consider the homotopy problem. Let M be a complete Rie-
mannian manifold with finite volume and N be a geodesic metric space.
A continuous map u : M — N is said to be harmonic if it is locally
energy minimizing. Precisely, ‘locally energy minimizing' means that for
each z € M, there is a neighborliood of @ such that all W2 comparison
maps which agree with u outside this neighborhood have no less energy.

Eells-Sampson([3] proved in 1964 that in case M is a compact Rie-
mannian manifold and N is a Riemanuian manifold of nonpositive sec-
tional curvature, there is a harmonic map in each Lhomotopy class of
maps from M to N. And Korevaar-Schoen generalized that to the case
of compact Riemannian manifold domain and NPC| space of nonpositive
curvature) target.

We prove the existence of homotopic harmonic maps in more general
case of noncompact domain.

MAIN THEOREM. Let M be a complete Riemannian manifold with fi-
nite volume, without boundary and with a norial subgroup H < 1 (M)
so that I' = m;(M)/ H is finitely generated. Let N be a compact geo-
desic space of nonpositive curvature.

Then for each continuous map f : M — N with f1(H) = 0, there
exist a Lipschitz harmonic map u : M — N which is homotopic to f.

REMARK 3.5. If the domain M is compact then mi (M) 1s finitely
generated, so the normal subgroup H can be chosen to be 0. Hence for
any continuous map f : A — N, there exist a Lipschitz harmonic map
u: M — N homotopic to f. This is the case discussed in (7).

Before proving the theorem, we state some lemmas.
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LEMMA 3.6. Let I' be a Lie group acting on a Riemannian manifold
M, X be a CAT(0)-space and let p: ' — isom(X) be a homomorphism.
Then any two continuous W2 map u. v : M — X are homotopic in
W12 via the p-equivariant homotopy given by geodesics in X.

PROOF. Given two continuous u, v € W12(M, X) define a homotopy
F: M x[0,1] - X by the following.

Since X is a CAT(0)-space, there is a unique geodesic ay : [0,1] — X
from u(z) to v(a) for each @ € M. Now define F(a.t) = az(t) for each
(z,t) € M x [0,1], then we can easily see that F is continuous in both
variable from the convexity of CAT(0)-space Furthermore, for each
t €[0,1], us = F(-,t) belongs to W2(Af, X) by the energy convexity;

E% <tE* +(1-1HE" - (1 —”/ Vd(u, ).

J
So F is well defined.
For the equivariance of F, we need to show -he following;
ur(yx) = p(y)ui(x) for each y € T, (2, t) € M x [0,1].

Since the isometry p(~) moves geodesic to geodesic, 8(t) = ol ug(x)
is the geodesic from p(vy)u(z) = u(yr) to p(yiug(a) = v(yx). On the
other hand, the curve §(#) = u () is also a geodesic from p(vy)u(r) =
u(yz) to p(v)ui(x) = v(yx). By the uniqueness of geodesics in CAT(0)-
space, we can conclude that 4 and ¢ coinside. Hence u,(v2) = ply)ug(x)
and the proof is complete. O

LEMMA 3.7. ([7] P.54). Let (2. ¢) be a Ricinannian domaiiu, a con-
nected relatively compact open subset of a Riemannian manifold (M, q)
with Lipschitz boundary, and let (X,d) be a CAT(0) metric space. For
amap ¢ € WH3(Q, X) define

W,2 = (e WIHQ X)tr(u) == tr(¢)),

where tr(u) denotes the trace of u on the boun-ary 0§ of Q.
Then there exists a unique u € ”;’;'2 which is minimizing for the
Sobolev energy. In fact the energy EV = Jo INv Ry of u satisfies

E*=FE,:= inf E"
velt

Now we are ready to prove the Main Theoren.
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PROOF OF THE MAIN THEOREM. By the correspondence between
conjugacy classes of subgroups of 7;(M) and the covering spaces over
M, there is a covering space A with the covering map p : M — M such
that py(71(M)) = H. Since H is a normal subgroup of m (M), M is a
regular covering space. Furthermore, A/ is a Riemannian manifold.

It is easy to see that I' = =, (M)/H acts on M frecly and =1 (N) acts
on the universal covering space X of N isometrically.

For a fixed z € M and # € p~!(2), f induces the liomomorphism

Foo mi(M)e ) pp(mi(M)z) — 71(N) g0

because fy(py(m1(M):)) = 0. Now we can choose a lifting f : M — X
so that f is fn-equivariant.

Since f € WU2(M.N), f e WE2(A,X). In other words, there is
a fﬁ-equivarial‘xt W2 map. So by the Theorem 2.3 we can construct a
fﬁ-equivariant energy minimizing sequence {u, : M — X} so that for
any compact subset ' C A and i sufficiently large (depending on I\'),
the ; is Lipschitz continuous on (the lift in M of ) I,

By Lemma 3.3 @;’s are homotopic to f via fr-equivariant homotopies.
So the projections u,’s are homotopic to f and for each compact subset
K C M and sufficiently large 7. «, is uniformly Lipschitz continuous
on K. Since N is compact and the family {wi} is equicontinuous, a
subsequence converges uniformly to a limit map on each compact I C

M.

Now we exhaust M by a nested sequence of compact subsets {4, }

te. N\hwCchy,c---CK,,C - and

M = G ;.

=]

For Iy, there is a subsequence {u!} of {u;} which converges uniformly
to a limit map v; on 1.

For K3, there is also a subsequence {u?} of {uj} which converges
uniformly to a limit map vz. Then vy coinsides with vy in V5. Continuing
this process, one can obtain uniformly convergent subs:quences {u!'} for
each n and the uniform limit v, with the property

tnln; = v for each i <.
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Clearly the sequence {v, } converges uniformly on each compact subsets
to a limit map u: M — N.

Now it remains to show that u is harmonic. Note that each v, is
locally energy minimizing in &', by the analoguous argument as in [7].
Since every compact subset of M is contained in. some I, and u coinside
with up, in Ny, u is locally energy minimizing. The proof is complete. O
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