# ON CERTAIN MAXIMAL OPERATORS BEING A<sub>1</sub> WEIGHTS

#### CHOON-SERK SUH

ABSTRACT. Let f be a measurable function on the unit ball B in  $C^n$ , then we define a maximal function  $M_p(f)$ ,  $1 \le p < \infty$ , by

$$M_p(f)(\zeta) = \sup_{\delta>0} \left( \frac{1}{\sigma(\beta(\zeta,\delta))} \int_{T(\beta(\zeta,\delta))} |f(z)|^p \frac{d\nu(z)}{(1-|z|)^n} \right)^{1/p}$$

where  $\sigma$  denotes the surface area measure on S, the boundary of B, and  $T(\beta(\zeta, \delta))$  denotes the tent over the ball  $\beta(\zeta, \delta)$ . We prove that the maximal operator  $M_p$  belongs to the Muckenhoupt class  $A_1$ .

## 1. Introduction

Let S be the boundary of the unit ball B in the complex n-space  $C^n$ . Then we shall consider a maximal operator  $M_p$  defined on S; let f be a measurable function f on B and  $1 \le p < \infty$ , then we define a maximal function  $M_p(f)$ , for  $\zeta \in S$ , by

$$M_p(f)(\zeta) = \sup_{\delta > 0} \left( \frac{1}{\sigma(\beta(\zeta, \delta))} \int_{T(\beta(\zeta, \delta))} |f(z)|^p \frac{d\nu(z)}{(1 - |z|)^n} \right)^{1/p}$$

Here  $\sigma$  denotes the surface area measure on  $S_+$  and  $T(\beta(\zeta, \delta))$  denotes the tent over the ball  $\beta(\zeta, \delta)$ .

In this paper we study that the maximal operator  $M_p$  belongs to the Muckenhoupt class  $A_1$ . To prove this we need to prove that this operator  $M_p$  is of weak type (p,p) for  $1 \le p < \infty$ .

Received March 13, 1995. Revised August 1, 1995.

1991 AMS Subject Classification: 42B20, 42B25.

Key words: maximal operator,  $A_1$  condition, weak type (p,p), tent.

#### 2. Preliminaries

Let  $z = (z_1, \ldots, z_n)$  and  $w = (w_1, \ldots, w_n)$  be two vectors in the complex *n*-space  $C^n$ . Then the *inner product*  $\langle z, w \rangle$  of z and w will be given by

$$\langle z, w \rangle = \sum_{i=1}^{n} z_i \overline{w}_i,$$

where  $\overline{w}_i$  is the complex conjugate of  $w_i$ , and the associated norm |z| of z will be denoted by

$$|z| = \langle z, z \rangle^{1/2} = \left(\sum_{i=1}^{n} |z_i|^2\right)^{1/2}.$$

The open unit ball of  $C^n$  will be denoted by B, i.e.,  $B = \{z \in C^n : |z| < 1\}$ . The boundary of B is the sphere S, that is, the set  $S = \{z \in C^n : |z| = 1\}$ .

Throughout this paper, we let  $\sigma$  denote the surface area measure on S. Note that the Lebesque measure  $\nu$  and the measure  $\sigma$  are related by the formula

(2.1) 
$$\int_{C^n} f(z)d\nu(z) = 2n \int_0^\infty r^{2n-1} dr \int_S f(r\zeta)d\sigma(\zeta).$$

For (2.1) see [5, p.13].

For  $\zeta, \eta \in S$  and  $\delta > 0$ , let

$$\rho(\zeta, \eta) = |1 - \langle \zeta, \eta \rangle|$$

and

$$\beta(\zeta, \delta) = \{ \eta \in S : |1 - \langle \zeta, \eta \rangle| < \delta \}.$$

Then it is easy to check that  $\rho$  defines a pseudo-metric on S and the triple  $(S, \rho, d\sigma)$  becomes a space of homogeneous type (see [1]).

For  $\alpha > 1$  and  $\zeta \in S$ , the set

$$\mathcal{A}_{\alpha}(\zeta) = \{ z \in B : |1 - \langle z, \zeta \rangle| < \alpha(1 - |z|) \}.$$

is called an *admissible approach region*. This terminology is due to Korányi [3].

For a closed subset  $F \subset S$ , we define the *tent* over an open subset  $O = F^c$ , as

$$T(O) = B \setminus \bigcup_{\zeta \in F} \mathcal{A}_4(\zeta).$$

For a measurable function f defined on B and  $1 \le p < \infty$ , we define a maximal function  $M_p(f)$ , for  $\zeta \in S$ , by

$$(2.2) M_p(f)(\zeta) = \sup_{\delta > 0} \left( \frac{1}{\sigma(\beta(\zeta, \delta))} \int_{T(\beta(\zeta, \delta))} |f(z)|^p \frac{d\nu(z)}{(1 - |z|)^n} \right)^{1/p}$$

As usual, throughout this paper C will denote a constant not necessarily the same at each occurrence.

## 3. Main result

LEMMA 1 (COVERING LEMMA, [1]). Let E be contained in some ball in S. Let  $\delta(\zeta)$  be a positive number for each  $\zeta \in E$ . Then there is a sequence of disjoint balls  $\beta(\zeta_i, \delta(\zeta_i))$ ,  $\zeta_i \in E$ , such that

$$E \subset \bigcup_{i} \beta(\zeta_{i}, 4K\delta(\zeta_{i})),$$

where K is the constant in the triangle inequality. Furthermore, every  $\zeta \in E$  is contained in some ball  $\beta(\zeta_i, 4K\delta(\zeta_i))$  satisfying  $\delta(\zeta) \leq 2\delta(\zeta_i)$ .

PROPOSITION 2. Let  $M_p$  be defined as in (2.2). Then the maximal operator  $M_p$  is of weak type (p,p) for  $1 \le p < \infty$ .

Proof. Fix  $\lambda > 0$ , set

$$E_{\lambda} = \{ \zeta \in S : M_p(f)(\zeta) > \lambda \}.$$

For each  $\zeta \in E_{\lambda}$ , let

$$\delta(\zeta) = \sup \left\{ \delta > 0 : \left( \frac{1}{\sigma(\beta(\zeta, \delta))} \int_{T(\beta(\zeta, \delta))} |f(z)|^p \frac{d\nu(z)}{(1 - |z|)^n} \right)^{1/p} > \lambda \right\}.$$

Thus for each  $\zeta \in E_{\lambda}$ , we have  $\delta(\zeta) > 0$  and

(3.1) 
$$\frac{1}{\sigma(\beta(\zeta,\delta(\zeta)))} \int_{T(\beta(\zeta,\delta(\zeta)))} |f(z)|^p \frac{d\nu(z)}{(1-|z|)^n} \ge \lambda^p.$$

Apply Lemma 1 to the balls  $\beta(\zeta, \delta(\zeta))$  to obtain a sequence of disjoint balls  $\beta(\zeta_i, \delta(\zeta_i))$ , so that

$$E_{\lambda} \subset \bigcup_{i} \beta(\zeta_{i}, 4K\delta(\zeta_{i})).$$

Then it follows from the doubling property of  $\sigma$  [1] and (3.1) that

$$\sigma(E_{\lambda}) \leq \sum_{i} \sigma(\beta(\zeta_{i}, 4K\delta(\zeta_{i})))$$

$$\leq C \sum_{i} \sigma(\beta(\zeta_{i}, \delta(\zeta_{i})))$$

$$\leq \frac{C}{\lambda^{p}} \sum_{i} \int_{T(\beta(\zeta_{i}, \delta(\zeta_{i})))} |f(z)|^{p} \frac{d\nu(z)}{(1 - |z|)^{n}}$$

$$\leq \frac{C}{\lambda^{p}} \int_{B} |f(z)|^{p} \frac{d\nu(z)}{(1 - |z|)^{n}}$$

$$= C(||f||_{p}/\lambda)^{p},$$

since the balls  $\beta(\zeta_i, \delta(\zeta_i))$  are disjoint. Hence the maximal operator  $M_p$  is of weak type (p, p). The proof is therefore complet  $\epsilon$ . #

LEMMA 3. Let  $M_p$  be defined as in (2.2). Then there is a constant C such that

$$M_p(f)(\xi) \le CM_p(f)(\eta)$$

for any  $\xi, \eta \in \beta(\zeta, \delta)$ .

PROOF. Let  $\xi, \eta \in \beta(\zeta, \delta)$ . If  $M_p(f)(\xi) \neq 0$ , then clearly  $\eta \in \beta(\xi, C\delta)$  with C > 1. Thus

$$M_p(f)(\xi) \le \sup_{\delta > 0} \frac{1}{\sigma(\beta(\xi, \delta))} \left( \int_{T(\beta(\xi, C\delta))} |f(z)|^p \frac{d\nu(z)}{(1 - |z|)^n} \right)^{1/p}$$
  
 
$$\le CM_p(f)(\eta).$$

The proof is therefore complete. #

THEOREM 4. Let  $M_p$  be defined as in (2.2) and  $1 \le p < \infty$ . Then the maximal operator  $M_p$  satisfies the  $A_1$  condition [4]; more precisely, there is a constant C such that

$$\frac{1}{\sigma(\beta(\zeta,\delta))} \int_{\beta(\zeta,\delta)} M_p(f)(\xi) d\sigma(\xi) \le C \inf_{\xi \in \beta(\zeta,\delta)} M_p(f)(\xi)$$

for all balls  $\beta(\zeta, \delta)$  containing  $\xi$ .

Proof. Let

$$M_1(u)(\zeta) = \sup_{\delta > 0} \frac{1}{\sigma(\beta(\zeta, \delta))} \int_{T(\beta(\zeta, \delta))} u(z) \frac{d\nu(z)}{(1 - |z|)^n},$$

where  $u(z) = |f(z)|^p$ . For any ball  $\beta(\zeta, \delta)$  in S, decompose

$$u(z) = u_1(z) + u_2(z),$$

where

$$u_1(z) = u(z)\chi_{T(\beta(\zeta,C\delta))}(z)$$
 for  $C > 1$ .

Since  $M_1$  is of weak type (1,1), by the Kolmogorov's inequality there is a constant C such that

(3.2)

$$\int_{\beta(\zeta,\delta)} M_1(u_1)(\xi)^{1/p} d\sigma(\xi) 
\leq C[\sigma(\beta(\zeta,\delta))]^{1-1/p} \left( \int_B u_1(z) \frac{d\nu(z)}{(1-|z|)^n} \right)^{1/p}$$

Thus it follows from (3.2) that

$$\frac{1}{\sigma(\beta(\zeta,\delta))} \int_{\beta(\zeta,\delta)} M_1(u_1)(\xi)^{1/p} d\sigma(\xi) 
\leq C \left( \frac{1}{\sigma(\beta(\zeta,\delta))} \int_B u_1(z) \frac{d\nu(z)}{(1-|z|)^n} \right)^{1/p} 
\leq C \left( \frac{1}{\sigma(\beta(\zeta,\delta))} \int_{T(\beta(\zeta,C\delta))} u(z) \frac{d\nu(z)}{(1-|z|)^n} \right)^{1/p} 
\leq C M_1(u)(\xi)^{1/p}$$

for any  $\xi \in \beta(\zeta, \delta)$ . Thus

$$(3.3) \quad \frac{1}{\sigma(\beta(\zeta,\delta))} \int_{\beta(\zeta,\delta)} M_1(u_1)(\xi)^{1/p} d\sigma(\xi) \le C \inf_{\xi \in \beta(\zeta,\delta)} M_1(u)(\xi)^{1/p}.$$

On the other hand, it follows from Lemma 3 that

$$(3.4) M_1(u_2)(\xi) \le CM_1(u_2)(\eta)$$

for any  $\xi, \eta \in \beta(\zeta, \delta)$ . Thus (3.4) implies that

$$(3.5)$$

$$\frac{1}{\sigma(\beta(\zeta,\delta))} \int_{\beta(\zeta,\delta)} M_1(u_2)(\xi)^{1/p} d\sigma(\xi) \leq C \inf_{\eta \in \beta(\zeta,\delta)} M_1(u_2)(\eta)^{1/p}$$

$$\leq C \inf_{\eta \in \beta(\zeta,\delta)} M_1(u)(\eta)^{1/p}.$$

Since

$$M_1(u)(\xi)^{1/p} \le C \left( M_1(u_1)(\xi)^{1/p} + M_1(u_2)(\xi)^{1/p} \right),$$

it follows from (3.3) and (3.5) that

$$\frac{1}{\sigma(\beta(\zeta,\delta))} \int_{\beta(\zeta,\delta)} M_1(u)(\xi)^{1/p} d\sigma(\xi) 
\leq \frac{C}{\sigma(\beta(\zeta,\delta))} \left( \int_{\beta(\zeta,\delta)} M_1(u_1)(\xi)^{1/p} d\sigma(\xi) + \int_{\beta(\zeta,\delta)} M_1(u_2)(\xi)^{1/p} d\sigma(\xi) \right) 
\leq C \inf_{\xi \in \beta(\zeta,\delta)} M_1(u)(\xi)^{1/p}.$$

Thus  $M_1(u)^{1/p} = M_p(f) \in A_1$ . The proof is therefore complete. #

### References

- R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains éspaces homogènes, Lecture Notes in Math. 242 (1971), Springer-Verlag, Berlin.
- L. Hörmander, L<sup>p</sup> estimates for (pluri) subharmonic function, Math. Scand. 20 (1967), 65-78.

- 3. A. Korányi, Harmonic functions in hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507-516.
- 4. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
- W. Rudin, Function Theory in the Unit Ball of C<sup>n</sup>, Grudlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Princeton Univ. Press, Princeton, N. J., 1980.
- 6. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.

Department of Mathematics Dongyang University of Technology Youngju 751-800, Korea