WEAKLY POSITIVE IMPLICATIVE BCI-ALGEBRAS

SHI MING WEI AND YOUNG BAE JUN

ABSTRACT. We introduce the concept of weakly positive implicative ideals in BCI-algebras and give some characterizations of weakly positive implicative BCI-algebras and weakly positive implicative ideals.

In 1978, K. Iséki and S. Tanaka [3] introduced the concept of positive implicative BCK-algebras. M. A. Chaudhry [1] defined the notion of weakly positive implicative BCI-algebras as a generalization of positive implicative BCK-algebras and gave a characterization of a weakly positive implicative BCI-algebra. In this note, we establish the notion of weakly positive implicative ideals in BCI-algebras, and investigate some properties of it. Some characterizations of weakly positive implicative BCI-algebras and weakly positive implicative ideals are given. First of all we recall some definitions and results concerning BCI-algebras.

An algebra (X; *, 0) of type (2, 0) is called a *BCI-algebra* if it satisfies the following axioms:

- (I) ((x*y)*(x*z))*(z*y) = 0,
- (II) (x * (x * y)) * y = 0,
- $(III) \ x * x = 0,$
- (IV) x * y = 0 and y * x = 0 imply x = y.

A partial ordering \leq on a BCI-algebra X can be defined by $x \leq y$ if and only if x * y = 0.

If a BCI-algebra X satisfies the identity

(V) 0 * x = 0 for all $x \in X$,

then X is called a BCK-algebra.

In a BCI-algebra X, the following hold:

(1) $x \le 0$ implies x = 0.

Received May 20, 1995. Revised June 26, 1995.

1991 AMS Subject Classification: 03G25, 06F35.

Key words and phrases: Weakly positive implicative ideal, closed ideal, atom.

The second author was supported (in part) by the Basic Science Research Institute Program, Ministry of Education, 1994, Project No. BSRI-94-1406.

- (2) x * 0 = x.
- (3) (x * y) * z = (x * z) * y.
- (4) 0*(x*y) = (0*x)*(0*y).
- (5) x * (x * (x * y)) = x * y.
- (6) ((x*z)*(y*z))*(x*y) = 0.
- (7) x * y = 0 implies (x * z) * (y * z) = 0 and (z * y) * (z * x) = 0.

A non-empty subset I of a BCI-algebra X is called an *ideal* of X if it satisfies:

- (i) $0 \in I$,
- (ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

An ideal I of a BCI-algebra X is called *closed* if $x \in I$ implies $0*x \in I$. Any ideal I of a BCI-algebra X has the following property:

- (8) $x \in I$ and $y \le x$ imply $y \in I$.
- C. S. Hoo [2] gave a characterization of closed ideal as follows: An ideal I of a BCI-algebra X is closed if and only if I is a subalgebra of X.
- J. Meng and X. L. Xin [5] introduced the notion of atoms. An element a of a BCI-algebra X is called an atom if x*a=0 implies x=a for all $x \in X$. Let L(X) denote the set of all atoms of X. For all a in L(X), $V(a) = \{x \in X : a*x=0\}$ is called a branch of X.

PROPOSITION 1 ([5]). Let X be a BCI-algebra. Then the following hold:

- (i) For any $x \in X$, $0 * (0 * x) \in L(X)$ and $x \in V(0 * (0 * x))$.
- (ii) If $a, b \in L(X)$, then $a * b \in L(X)$ and $x * y \in V(a * b)$ for all $x \in V(a)$ and all $y \in V(b)$.
- (iii) If $a, b \in L(X)$, then a * x = a * b for all $x \in V(b)$.
- (iv) L(X) is a subalgebra of X.
- (v) $a \in L(X)$ if and only if x * (x * a) = a for all $x \in X$.

For any non-empty subset A of X, we denote

$$L(A) = \{0 * (0 * x) : x \in A\}.$$

PROPOSITION 2 ([4]). Let I be an ideal of a BCI-algebra X. Then

- (i) $L(I) = I \cap L(X)$.
- (ii) L(I) is an ideal of L(X).
- (iii) I is closed if and only if L(I) is closed in L(X).

PROPOSITION 3 ([4]). Let X be a BCI-algebra and A a non-empty subset of L(X). Denote $I = \bigcup_{a \in A} V(a)$. Then I is an ideal (resp. a subalgebra) of X if and only if A is an ideal (resp. a subalgebra) of L(X).

Let I be an ideal of a BCI-algebra X. By CL(I) we denote the set $\bigcup_{a\in L(I)}V(a)$.

From Propositions 2 and 3 we have the following corollary.

COROLLARY 4. Let I be an ideal of a BCI-algebra X. Then

- (i) CL(I) is an ideal of X.
- (ii) CL(I) is closed if and only if I is closed.

A BCK-algebra X is said to be positive implicative [3] if (x*z)*(y*z) = (x*y)*z for all $x, y, z \in X$. A BCI-algebra X is said to be weakly positive implicative [1] if ((x*z)*z)*(y*z) = (x*y)*z for all $x, y, z \in X$.

We propose a characterization of a weakly positive implicative BCI-algebra.

THEOREM 5. Let X be a BCI-algebra. Then the following are equivalent:

- (i) X is weakly positive implicative.
- (ii) ((x * y) * y) * (0 * y) = x * y.
- (iii) x * (x * y) = ((x * (x * y)) * (x * y)) * (0 * (x * y)).
- (iv) ((x*z)*z)*(y*z) = 0 implies (x*y)*z = 0.
- (v) ((x * y) * y) * (0 * y) = 0 implies x * y = 0.

PROOF. (i)⇔(ii): See [1, Theorem 3].

- (ii) \Rightarrow (iii): In (ii), if we substitute x * y for y, then we have (iii).
- $(iii) \Rightarrow (ii)$: In (iii), substituting x * y for y; then

$$x*(x*(x*y)) = ((x*(x*(x*y)))*(x*(x*y)))*(0*(x*(x*y))).$$

It follows from (3), (4), (5) and Proposition 1(v) that

$$x * y = ((x * y) * (x * (x * y))) * ((0 * x) * ((0 * x) * (0 * y)))$$

= $((x * (x * (x * y))) * y) * (0 * y)$
= $((x * y) * y) * (0 * y).$

Hence (ii) holds.

- (i) ⇒(iv): It is an immediate consequence of weakly positive implicativity.
 - $(iv) \Rightarrow (v)$: It is trivial.
- (v) \Rightarrow (ii): Putting u = ((x * y) * y) * (0 * y); then u * (x * y) = 0 and (((x * u) * y) * y) * (0 * y) = (((x * y) * y) * (0 * y)) * u = 0. It follows from (v) that (x * y) * u = (x * u) * y = 0. Hence x * y = u, and so ((x * y) * y) * (0 * y) = x * y. Therefore (ii) holds. \Box

DEFINITION 1. A non-empty subset I of a BCI-algebra X is called a weakly positive implicative ideal of X if

- (i) $0 \in I$,
- (ii) $(((x * y) * y) * (0 * y)) * z \in I \text{ and } z \in I \text{ imply } x * y \in I.$

THEOREM 6. Any weakly positive implicative ideal is an ideal.

PROOF. Let I be a weakly positive implicative ideal of a BCI-algebra X and let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then by using (2), we have $(((x * 0) * 0) * (0 * 0)) * y = x * y \in I$ and $y \in I$. It follows from Definition 1(ii) that $x = x * 0 \in I$. Therefore I is an ideal of X. \square

The converse of Theorem 6 is not true, as seen in the next example.

EXAMPLE 1. Let $X = \{0, 1, 2, 3, 4, 5\}$. The binary operation * is defined by the following table:

*	0	1	2	3	4	5
0	0	0	0	0	0	5
1	1	0	1	0	0	5
2	2	2	0	0	0	5
3	3	3	3	0	0	5
4	4	4	4	3	0	5
5	5	5	5	5	5	0

By routine calculations we know that X is a BCI-algebra, and $I = \{0, 1\}$ is an ideal of X but not weakly positive implicative, because

$$(((4*3)*3)*(0*3))*1 = (3*3)*1 = 0 \in I$$
 and $1 \in I$ but $4*3 = 3 \notin I$.

THEOREM 7. Let I be an ideal of a BCI-algebra X. Then the following conditions are equivalent:

- (i) I is weakly positive implicative.
- (ii) $((x*y)*y)*(0*y) \in I \text{ implies } x*y \in I.$
- (iii) $((x*z)*z)*(y*z) \in I$ implies $(x*y)*z \in I$.

PROOF. (i) \Rightarrow (ii): Suppose I is a weakly positive implicative ideal of X and let $x, y \in X$. If $((x*y)*y)*(0*y) \in I$ then $(((x*y)*y)*(0*y))*0 \in I$ and $0 \in I$. It follows that $x*y \in I$.

(ii) \Rightarrow (iii): Suppose $((x*z)*z)*(y*z) \in I$ for $x,y,z \in X$. Putting u=x*y, then we have

$$((u*z)*z)*(0*z) = (((x*y)*z)*z)*(0*z)$$

$$= (((x*z)*z)*y)*((y*z)*y)$$

$$\leq ((x*z)*z)*(y*z),$$

and hence $((u*z)*z)*(0*z) \in I$. From (ii) it follows that $(x*y)*z = u*z \in I$.

(iii) \Rightarrow (i): Obviously $0 \in I$. Suppose $(((x*y)*y)*(0*y))*z \in I$ and $z \in I$ for $x, y, z \in X$. Then $((x*y)*y)*(0*y) \in I$ as I is an ideal of X. By (iii), we have $x*y = (x*0)*y \in I$. Therefore I is a weakly positive implicative idal of X. \square

THEOREM 8. Let I be a closed ideal of a BCI-algebra X. Then I is a weakly positive implicative ideal of CL(I) if and only if for all $a \in CL(I)$, the set $A_a := \{x \in X : x * a \in I\}$ is an ideal of X.

PROOF. Suppose I is a weakly positive implicative ideal of CL(I) and let $a \in CL(I)$. Then clearly $0 * a \in I$ or $0 \in A_a$. Let $x, y \in X$ be such that $x * y \in A_a$ and $y \in A_a$. Then $(x * y) * a, y * a \in I \subseteq CL(I)$, and hence $x, y \in CL(I)$ because CL(I) is an ideal of X. Noticing from (3) and (6) that $((x * a) * a) * (y * a) \le (x * y) * a$ and using (8); then $((x*a)*a)*(y*a) \in I$ and hence $(x*a)*a \in I$. Thus $((x*a)*a)*(0*a) \in I$ as I is a closed ideal and so a subalgebra. It follows from Theorem 7(ii) that $x * a \in I$ or $x \in A_a$. Therefore A_a is an ideal of X.

Conversely suppose that A_a is an ideal of X for all $a \in CL(I)$. If $((x * y) * y) * (0 * y) \in I$ for $x, y \in CL(I)$, then $(x * y) * (0 * y) \in A_y$.

By Proposition 2 we have $(0*y)*y \in L(CL(I)) = L(I) \subseteq I$, and hence $y, 0*y \in A_y$. It follows that $x \in A_y$ or $x*y \in I$. Therefore I is a weakly positive implicative ideal of CL(I). \square

COROLLARY 9. Let I be a closed ideal of a BCI-algebra X and L(X) a subset of I. Then I is a weakly positive implicative ideal of X if and only if for all $a \in X$, A_a is an ideal of X.

COROLLARY 10. Let I be a closed ideal of a BCI-algebra X. If I is a weakly positive implicative ideal of X, then for all $a \in CL(I)$, A_a is an ideal of X.

THEOREM 11. Let A and B be ideals of a BCI-algebra X such that $A \subseteq B$. If A is weakly positive implicative, then so is B.

PROOF. Assume that A is a weakly positive implicative ideal of X. Let $x, y \in X$ be such that $((x*y)*y)*(0*y) \in B$. Putting u = ((x*y)*y)*(0*y) and using (3); then we have $(((x*u)*y)*y)*(0*y) = 0 \in A$. It follows from (3) and Theorem 7(ii) that $(x*y)*u = (x*u)*y \in A \subseteq B$, and hence $x*y \in B$. This proves that B is a weakly positive implicative ideal of X. \square

Finally we give a characterization of weakly positive implicative BCIalgebras in terms of weakly positive implicative ideals.

THEOREM 12. Let X be a BCI-algebra. Then the following are equivalent:

- (i) X is weakly positive implicative.
- (ii) {0} is a weakly positive implicative ideal of X.
- (iii) Every ideal of X is weakly positive implicative.

PROOF. (i) \Rightarrow (ii): Suppose that X is weakly positive implicative. If $((x*y)*y)*(0*y) \in \{0\}$ for $x, y \in X$, then ((x*y)*y)*(0*y) = 0. It follows from Theorem 5(v) that $x*y = 0 \in \{0\}$. Hence $\{0\}$ is a weakly positive implicative ideal of X.

- (ii)⇒(iii): It is an immediate consequence of Theorem 11.
- (iii) \Rightarrow (i): Assume that every ideal of X is weakly positive implicative. Setting u = ((x * y) * y) * (0 * y) for all $x, y \in X$ and using (3); then we obtain u * (x * y) = 0 and (((x * u) * y) * y) * (0 * y) = 0. Since $\{0\}$ is

a weakly positive implicative ideal of X, it follows from Theorem 7(ii) that (x*y)*u = (x*u)*y = 0, and hence x*y = u = ((x*y)*y)*(0*y). Therefore X is weakly positive implicative. \square

References

- 1. M. A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japon. 35 (1990), 141-151.
- C. S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35 (1990), 1103-1112.
- 3. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- 4. J. Meng and S. M. Wei, Periodic BCI-algebras and closed ideals, Math. Japon. 38 (1993), 571-575.
- 5. J. Meng and X. L. Xin, Characterizations of atoms in BCI-algebras, Math. Japon. 37 (1992), 359-361.

Shi Ming Wei Institute of Mathematics Huaibei Coal Mining Teachers College Huaibei 235000, P. R. China

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail:ybjun@nongae.gsnu.ac.kr