ON THE FIXED-POINT THEOREMS ON THE INFRASOLVMANIFOLDS

DAE-SHIK CHUN, CHAN-GYU JANG AND SIK LEE

ABSTRACT. Fixed-point theory has an extension to coincidences. For a pair of maps $f,g:X_1\to X_2$, a coincidence of f and g is a point $x\in X_1$ such that f(x)=g(x), and $\mathrm{Coin}(f,g)=\{x\in X_1\mid f(x)=g(x)\}$ is the coincidence set of f and g. The Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) are used to estimate the cardinality of $\mathrm{Coin}(f,g)$. The aspherical manifolds whose fundamental group has a normal solvable subgroup of finite index is called infrasolv-manifolds. We show that if M_1,M_2 are compact connected orientable infrasolvmanifolds, then $N(f,g)\geq |L(f,g)|$ for every $f,g:M_1\to M_2$.

1. Introduction

For a continuous self-map $f: X \to X$, the fixed point set $\{x \in X \mid f(x) = x\}$ is denoted by $\operatorname{Fix}(f)$. The Nielsen number N(f) provides a lower bound on the number of fixed points of g, for all maps g homotopic to f. However, it is very difficult to compute N(f) from its definition. The Lefschetz number L(f) is computable invariant. We search to find conditions on either the space X or the map f which allow N(f) and L(f) to be related.

Anosov showed that N(f) = |L(f)| for all maps on compact nilmanifolds ([1]). On the other hand, the counter-examples on Klein bottle (N(f) = 4, L(f) = 2) show that the equality does not hold for all maps on solvmanifolds, nor on infranilmanifolds. C. McCord showed that $N(f) \geq |L(f)|$ for all maps on compact solvmanifolds ([11], Theorem 2.5).

Received March 12, 1994.

¹⁹⁹¹ AMS Subject Classification: 54H25, 55M20.

Key words and phrases: Nilsen (or Lefschetz) coincidence number, infrasolvemanifold, infranilmanifold.

This research was supported by Korea Science and Engineering Foundation, 1993.

Fixed-point theory has an extension to coincidences. The Nielsen coincidence number N(f,g) and the Lefschetz coincidence number L(f,g) (For the precise definitions see §2 of [13]) are the generalization of N(f) and L(f) respectively. Brooks and Wang showed that N(f,g) = |L(f,g)| when $M_1 = M_2$ is an infranilmanifold ([4]). C. McCord showed that $N(f,g) \geq |L(f,g)|$ when M_1, M_2 are compact orientable solvmanifolds of the same dimension, with equality if M_2 is a nilmanifold ([12], Theorem 2). Nilmanifolds, infranilmanifolds and solvmanifolds are the subclasses of the infrasolvmanifolds (For the precise definitions see §6 of [13], §4 of [14] and p. 546 of [8]). Every infrasolvmanifold has a finite regular cover by a solvmanifold and every infranilmanifold has a finite regular cover by a nilmanifold. In all cases, the universal cover is contractible, so the manifolds are aspherical.

In this paper, we use the liftings of f and g which C. McCord used in [13], and we show that if M_1, M_2 are compact connected orientable infrasolvmanifolds of the same dimension, then $N(f,g) \geq |L(f,g)|$ for every $f,g: M_1 \to M_2$, with equality for every f and g if M_2 is a nilmanifold.

2. Brief review of coincidence theory and lifts

For a pair of maps $f, g: M_1 \to M_2$, we denote the coincidence set of f and g by

Coin
$$(f,g) = \{ x \in X_1 \mid f(x) = g(x) \}.$$

For some $x, y \in \text{Coin}(f, g)$, if there exists a path ω in X_1 from x to y with $f \cdot \omega \simeq g \cdot \omega$ (rel $\{0, 1\}$), then set $x \sim y$. This relation classify Coin(f, g) into coincidence classes. Each class is compact and open in Coin(f, g) ([2], p. 22 and [13], §2). The set of the classes of Coin(f, g) is denoted by $\mathcal{R}(f, g)$.

If $F: f_0 \simeq f_1$ and $G: g_0 \simeq g_1$, then coincidence classes $S_0 \in \mathcal{R}(f_0, g_0)$ and $S_1 \in \mathcal{R}(f_1, g_1)$ are (F, G)-related if there exist $x_0 \in S_0$, $x_1 \in S_1$ and a path ω in X_1 such that the paths $\langle F, \omega \rangle$ and $\langle G, \omega \rangle$, defined by $\langle F, \omega \rangle (t) = F_t(\omega(t))$, are homotopic in X_2 . A class $S \in \mathcal{R}(f, g)$ is topologically essential if, for every $F: f \simeq f'$, $G: g \simeq g'$, there exists a class $S' \in \mathcal{R}(f', g')$ which is (F, G)-related to S. We denote the set of essential classes by $\mathcal{E}(f, g)$. The Nielsen coincidence number N(f, g) is the $|\mathcal{E}(f, g)|$ (cardinality of $\mathcal{E}(f, g)$).

Suppose M_1 and M_2 are both compact connected orientable *n*-manifolds. For each coincidence class S, a coincidence index $\operatorname{Ind}(f, g, S)$ is defined ([13], p. 348). We have

$$\mathrm{Ind}(f,g)=\sum\mathrm{Ind}(f,g,S),$$

the sum of the coincidence index over all coincidence classes.

In rational coefficients, let $D_i: H^{n-p}(M_i) \longrightarrow H_p(M_i)$ be the Poincaré duality isomorphism and let $\theta_p(f,g)$ be the composition

$$H_p(M_1) \xrightarrow{f_{\bullet}} H_p(M_2) \xrightarrow{D_2^{-1}} H^{n-p}(M_2) \xrightarrow{g_{\bullet}} H^{n-p}(M_1) \xrightarrow{D_1} H_p(M_1)$$
([15], p. 176).

The <u>Lefschetz coincidence number</u> L(f, g) is defined as

$$\sum_{p=0}^{n} (-1)^p \operatorname{tr} \theta_p(f,g),$$

and the Lefschetz coincidence theorem states that L(f,g) = Ind(f,g). L(f,g) is the only defined for orientable manifolds because the coincidence index is only defined in that setting.

We now briefly review the covering spaces and lifts ([13], [7]). Fix base points $x_1 \in X_1$, $x_2 \in X_2$, and assume that $f(x_1) = x_2 = g(x_1)$. Let π_i denote $\pi(X_i, x_i)$ and define

$$C(\pi_i) = \{ \Gamma \lhd \pi_i \mid [\pi_i : \Gamma] < \infty \}$$

 $([\pi_i : \Gamma] = |\pi_i/\Gamma|)$. There is a one-to-one correspondence between elements of $\mathcal{C}(\pi_i)$ and finite regular covers of X_i . Recall that any manifold has an orientable cover.

For a pair of maps $f, g: X_1 \to X_2$, fix $\Gamma_2 \in \mathcal{C}(\pi_2)$ and corresponding finite regular cover $p_2: \tilde{X}_2 \to X_2$. Given a cover $p_1: \tilde{X}_1 \to X_1$ and corresponding $\Gamma_1 \in \mathcal{C}(\pi_1)$, f and g lift to some $\tilde{f}, \tilde{g}: \tilde{X}_1 \to \tilde{X}_2$ if and only if $f_\#, g_\#: \pi_1 \to \pi_2$ have $f_\#(\Gamma_1), g_\#(\Gamma_1) \subseteq \Gamma_2$. So define

$$\mathcal{C}(f,g,\Gamma_2) = \{ \Gamma_1 \in \mathcal{C}(\pi_1) \mid f_\#(\Gamma_1), g_\#(\Gamma_1) \subseteq \Gamma_2 \}.$$

The lifting diagram

$$\begin{array}{ccc} \tilde{X}_1 & \xrightarrow{\tilde{f}, \tilde{g}} & \tilde{X}_2 \\ p_1 \downarrow & & \downarrow p_2 \\ X_1 & \xrightarrow{f, g} & X_2 \end{array}$$

is called the $\Gamma_1 - \Gamma_2$ lifting diagram of f and g. For any lifting diagram, the lifts \tilde{f}, \tilde{g} may not have a coincidence index defined. We therefore define for every $\Gamma_2 \in \mathcal{C}(\pi_2)$ the set

$$\mathcal{IC}(f, g, \Gamma_2) = \{ \Gamma_1 \in \mathcal{C}(\pi_1) \mid f_{\#}(\Gamma_1), g_{\#}(\Gamma_1) \subseteq \Gamma_2$$
 and an index is defined for the $\Gamma_1 - \Gamma_2$ lifts \}.

In any $\Gamma_1 - \Gamma_2$ lifting diagram, Γ_i has covering group $\Phi_i = \pi_i/\Gamma_i$. $f_\#$ and $g_\#$ induce maps $\bar{f}, \bar{g}: \Phi_1 \to \Phi_2$. If $S \in \mathcal{R}(f,g)$, then define

$$C_{\#}(f, g, S) = \{ \alpha \in \pi_1 \mid f_{\#}(\alpha) = g_{\#}(\alpha) \},$$

where $f_{\#}$ and $g_{\#}$ are based at some $x \in S$. $C_{\#}(f, g, S)$ is a subgroup of π_1 , but is not necessarily normal.

3. Main Results

THEOREM 1. ([13], Cor. 5.7) Suppose M_1 , M_2 are compact orientable manifolds of the same dimension, and neither is a surface with negative Euler characteristic. If $S \in \mathcal{R}(f,g)$ and Θ is the set of coincidence classes covering S in the $\Gamma_1 - \Gamma_2$ lifting diagram, then

$$|\phi_1| \operatorname{Ind}(f, g, S) = \sum_{\tilde{S} \in \Theta} \operatorname{Ind}(\beta \circ \tilde{f}, \tilde{g}).$$

We now introduce two more concepts for the $\Gamma_1 - \Gamma_2$ lifting diagram of $f, g: M_1 \to M_2$. Let $\Gamma_2 \in \mathcal{C}(\pi_2)$, $\Gamma_1 \in \mathcal{C}(f, g, \Gamma_2)$ and lifts \tilde{f}, \tilde{g} of f and g. We define a Nielsen-type coincidence number

$$\tilde{N}(f, g, \Gamma_1) = \frac{1}{|\phi_1|} \sum_{\beta \in \phi_2} N(\beta \circ \tilde{f}, \tilde{g}).$$

If $\Gamma_1 \in \mathcal{IC}(f, g, \Gamma_2)$, we define a Lefschetz-type coincidence number

$$\tilde{L}(f,g,\Gamma_2) = rac{1}{|\phi_1|} \sum_{eta \in \phi_2} |L(eta \circ \tilde{f}, \tilde{g})|.$$

By simply combining two corollaries 7.6 and 5.10 of [13], we list the following theorem.

THEOREM 2. (Cor. 7.6 and Cor. 5.10 of [13]) If M_1, M_2 are compact connected orientable infrasolvmanifolds of the same dimension, then $C_{\#}(f,g,S) \subset \Gamma_1$ for every $\Gamma_1 \in \mathcal{C}(\pi_1)$ and every $S \in \mathcal{E}(f,g)$. Therefore $\tilde{N}(f,g,\Gamma_1) = N(f,g)$ for every $\Gamma_1 \in \mathcal{C}(f,g,\Gamma_2)$.

We are now concerned with the main results.

THEOREM 3. Suppose M_1, M_2 are compact connected orientable manifolds of the same dimension and neither is a surface with negative Euler characteristic. If $\Gamma_1 \in \mathcal{IC}(f, g, \Gamma_2)$, then

$$L(f,g) = \frac{1}{|\phi_1|} \sum_{\beta \in \phi_2} L(\beta \circ \tilde{f}, \tilde{g}).$$

PROOF. By Using the property of coincidence index and Theorem 1, we have

$$\begin{split} L(\beta \circ \tilde{f}, \tilde{g}) &= \sum_{\tilde{S} \in \mathcal{R}(\beta \circ \tilde{f}, \tilde{g})} \operatorname{Ind}(\beta \circ \hat{f}, \tilde{g}, \tilde{S}) \\ &= |\phi_1| \sum_{S \subset p_1(\operatorname{Coin}(\beta \circ \tilde{f}, \tilde{g}))} \operatorname{Ind}(f, g, S). \end{split}$$

The sum of the both sides of this equality over all $\beta \in \Phi_2$ derives the result:

$$\sum_{\beta \in \phi_2} L(\beta \circ \tilde{f}, \tilde{g}) = |\phi_1| \sum_{\beta \in \phi_2} \sum_{S \subset p_1(\operatorname{Coin}(\beta \circ \tilde{f}, \tilde{g}))} \operatorname{Ind}(f, g, S)$$

$$= |\phi_1| \sum_{S \in \mathcal{R}(f, g)} \operatorname{Ind}(f, g, S)$$

$$= |\phi_1| \cdot L(f, g). \quad \Box$$

THEOREM 4. (Thm. 2 of [12]) If M_1, M_2 are compact connected orientable solvmanifolds of the same dimension, then $N(f,g) \geq |L(f,g)|$ for all $f, g: M_1 \to M_2$. Moreover, if M_2 is a nilmanifold, then N(f,g) = |L(f,g)| for every (f,g).

THEOREM 5. If M_1, M_2 are compact connected orientable infrasolv-manifolds of the same dimension, then $N(f,g) \geq |L(f,g)|$ for every $f,g:M_1 \to M_2$. Moreover, if M_2 is a nilmanifold, then N(f,g) = |L(f,g)| for every (f,g).

PROOF. Choose a solvable $\Gamma_2 \in \mathcal{C}(\pi_2)$ and a solvable $\Gamma_1 \in \mathcal{IC}(f, g, \Gamma_2)$. Then by the definition of $\tilde{N}(f, g, \Gamma_1)$ and Theorem 2, we have:

$$N(f,g) = \frac{1}{|\phi_1|} \sum_{\beta \in \phi_2} N(\beta \circ \tilde{f}, \tilde{g}).$$

In the $\Gamma_1 - \Gamma_2$ lifting diagram, $\tilde{f}, \tilde{g}: \tilde{M}_1 \to \tilde{M}_2$ satisfies the conditions of Theorem 4. Thus we have:

$$\frac{1}{|\phi_1|} \sum_{\beta \in \phi_2} N(\beta \circ \tilde{f}, \tilde{g}) \ge \frac{1}{|\phi_1|} \sum_{\beta \in \phi_2} |L(\beta \circ \tilde{f}, \tilde{g})|$$

$$\ge \frac{1}{|\phi_1|} |\sum_{\beta \in \phi_2} L(\beta \circ \tilde{f}, \tilde{g})|$$

$$= |L(f, g)| \qquad \text{(by Theorem 3)}.$$

If M_2 is a nilmanifold, choose a solvable $\Gamma_1 \in \mathcal{IC}(f, g, \pi_2)$. Then f, g have unique liftings $\tilde{f} = f \circ p_1, \tilde{g} = g \circ p_1 \colon \tilde{M}_1 \to M_2$, and the covering map $p_1 \colon \tilde{M}_1 \to M_1$ has $\deg(p_1) = |\phi_1|$ and

$$L(\tilde{f}, \tilde{g}) = \deg(p_1) \cdot L(f, g) = |\phi_1| \cdot L(f, g).$$

By the moreover part of the Theorem 4,

(A)
$$N(\tilde{f}, \tilde{g}) = |L(\tilde{f}, \tilde{g})|.$$

On the other hand, since $\Gamma_2 = \pi_2, \phi_2 = 1$. Thus we have

$$\begin{split} N(f,g) &= \frac{1}{|\phi_1|} N(\tilde{f},\tilde{g}) \\ &= \frac{1}{|\phi_1|} N(f \circ p_1, g \circ p_1) \\ &= \frac{1}{|\phi_1|} |L(f \circ p_1, g \circ p_1)| \qquad \text{(by (A))} \\ &= \frac{1}{|\phi_1|} \cdot |\phi_1| |L(f,g)| = |L(f,g)| \qquad \Box \end{split}$$

References

- D. V. Anosov, The Nielsen number of maps of nil-manifolds, Russian Math. Surveys 40 (1985), 149-150.
- 2. R. Brooks, Coincidences, roots and fixed points, Ph. D. Dissertation, University of Califonia, Los Angeles, 1967.
- 3. R. Brooks R. Brown, J. Pak and D. Taylor, Nielsen numbers of maps of tori, Proc. Amer. Math. Soc. 52 (1975), 398-400.
- 4. R. Brooks and R. Wong, On changing fixed points and coincidences to roots, to appear in Proc. Amer. Math. Soc..
- P. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, vol. 83, Bull. Amer. Math. Soc., 1977.
- E. Fadell and S. Husseini, On a theorem of Anosov on Nielsen numbers for nilmanifolds, Nonlinear Functional analysis and its Applications (Maratea, 1985), 47-53, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 173 (1986), Reidel, Dordrecht-Boston, Mass..
- B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics Vol. 14, Amer. Math. Soc., Providence, Rhode Island, 1983.
- 8. S. Kwasik and K. B. Lee, The Nielsen numbers of homotopically periodic maps of infranilmanifolds, J. London Math. Soc. (2) 38 (1988), 544-554...
- 9. R. Lee and F. Raymond, Manifolds covered by Euclidean space, Topology 14 (1975), 49-57.
- A. Mal'cev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. (2) (1951), Amer. Math. Soc., Providence, RI, 276-307.
- C. K. McCord, Nielsen numbers and Lefschetz numbers on solvmanifolds, Pacific J. Math. 147 (1991), 151-164.
- 12. C. K. McCord, Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds, Topology and its Appl. 43 (1992), 249-261.
- 13. C. K. McCord, Estimating Nielsen numbers on infrasolumanifolds, Pacific J. Math. 154(2) (1992).

- 14. C. K. McCord, Computing Nielsen numbers, Contemporary Math., vol. 152, 1993.
- 15. J. Vick, Homology Theory, Academic Press, New York, 1973

Department of Mathematics Chonbuk National University Chhonju 560-190, Korea