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THRESHOLD RESULTS FOR THE MCKEAN EQUATION

Eviwoo LEE

1. Introduction

In 1952, British physiologists Hodgkin and Huxley [4] derived a model
that describes the conduction of the nervous impulse in the optical nerve
of a squid. The mathematical analysis of the Hodgkin-Huxley equations
1s technically very difficult, because of the complicated nonlinear func-
tions in the equations. In the early 1960’s FitzHugh and Nagumo (2],
[9] derived a simpler formulation which retains most of the qualitative
features of the original system, and yet is more amenable to analytical
manipulations. The equation is

(L.1) Ut = vz + f(v) —w
we = (v — yw),
where f(v) = v(1-v)(v—a) (0 <a<1),e>0, and v > 0. McKean
(6], [7] suggested a further simplification in which f(v) = (1 —v)(v—a)
is replaced by f(v) = —v + H(v — a), where H is the Heaviside step
function.

In this paper we consider the initial value problem for the equation

(1.2) v = vz + f(0),

the initial datum being v(z,0) = ¢(z). We assume that f(v) = —v +
H(v — a), where H is the Heaviside step function and a € (0, 1/2). Note
that (1.2) is obtained by setting ¢ = 0 and w = 0 at (1.1).

Our primary interest is to study the asymptotic behavior of solutions
of (1.2). One expects (1.2) to exhibit a threshold phenomenon. That is,
if the initial datum is sufficiently small, then one expects the solutions
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of (1.2) to decay exponentially fast to zero as t goes to infinity. In this
case, we say (2 ) is subthreshold. This corresponds to the biological fact
that a minimum amount of stimulus is needed to trigger a nerve impulse.
One expects, however, that if ¢(z) is sufficiently large, or superthresh-
old, then some sort of signal will propagate. Threshold results for the
equation (1.2) with smooth "cubic-like” function f have been given by
Aronson and Weinberger [1]. Terman [11] showed if ¢(z) > a on a
sufficiently large interval, then ¢(z) is superthreshold in the equation
(1.2).

It was thought [3] that if ¢(z) has a small compact support, that is,
@¢(z) = 0 outside some interval [—d, d] for small d, then the integral of
¢(z) is a crucial factor in the threshold phenomenon. In this paper we
give a rigorous mathematical proof of this fact in the equation (1.2).

Throughout this paper we assume that the initial datum ¢(z ) satisfies
the following conditions:

(a) p(z) € CY(R), (b) ¢(z) € [0,00) in R,

(¢) p(z) = ¢(—2)in R, (d) ¢'(z) <0in RY,

(e) im0 () = 0.

By a classical solution of equation (1.2) we mean the following:

DEFINITION. Let S7 = Rx(0,T) and Gt = {(z,t) € St,v(z,t) # a}.
Then v(z,t) is said to be a classical solution of the Cauchy problem (1.2)
if

(a) The functions v and v, are bounded, continuous in St.

(b) The functions v;; and v, are continuous in G, and satisfy the
equation

vy = Uzz + f(0).

(¢) lim¢—g v(z,t) = p(z) for each z € R.

If ¢(0) < a, then v(z,t) < @ in R x R" by the maximum principle
[10, pp. 159-72]. Hence v satisfies the linear partial differential equation
v¢ = vy —v. Therefore v(z,t) < e~*p(0), so v(z,t) decays exponentially
fast to 0. This is a simple case for the initial datum to be subthreshold.
Throughout this paper we assume that ¢(0) > a. We consider the curve
s(t) defined by

(1.3) s(t) = sup{z : v(z,t) = a}.
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We say that the initial datum is superthreshold if lim; .o s(t) = +oo0,
and subthreshold if s(t) is bounded above by a constant zo for all ¢ > 0.

Since ¢'(z) < 0 in Rt, we expect that v.(z,t) < 0 in R* x Rt.
Therefore s(t) is a well defined, continuous function for some time, say
t € [0,T)]. It follows that v > a for |z| < s(t), and v < a for |z| > s(t).
Let xq be the indicator function of the subset

(1.4) Q= {(z,t): v(z,t) > a,0<t < T}
Then v(z,t) satisfies the inhomogeneous equation

(1.5) vy = vzz — U + xq for |z| # s(t).

By Duhamel’s principle, the solution can be expressed as

s(r)

(1.6) v(z,t) =/ K(z —&,t) c,o({)d£+/ dT/ K(z —&,t—T1)dE,

- —s(r)

where K(z,t) = (e_t/2\/ﬁ)e"2/4t is the fundamental solution of the
differential equation ¥ = ¥, — . Setting z = s(t) in (1.6), we have
the integral equation

s(r)

(1.7) a=/_ K(s(t) — & ) f)d§+/ dT/ K(s(t) = £,t — 7)dE.

—siT)

The following theorem shows that the solution of (1.2) is completely
determined by the curve s(t).

THEOREM 1.1. Suppose that s(t) is a continuously differentiable fun-
ction which satisfies the integral equation (1.7) in [0, T), then the function
v(z,t) given by (1.6) is a classical solution of the equation (1.2) in R X
[0,77.

Proof. See [11].
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2. Lower and upper solutions

Let y(z,t) be the solution of the initial value problem
(2.1) bt = Yze — 9, (z,t) € Rx RT
$(2,0) = plz), 7 € R
Then y(z,t) = [© K(z — &,t)p(£)df. Assume a(t) is a nonnegative,

uniformly Lipschitz continuous function defined for ¢ € [0, T]. We define
the functions ®(a)(t) and ¥(a)(t) on the interval [0. T] by

alr)
(2.2) ®(a)(t) = / dT/ K(a(t) — &t — 7)d¢,

(2.3) (a)(t) = p(a(t),?).
Note that lim, o ¥(a)(t) = ¢(a(0)).

If ®(a)(t) + ¥(a)(t) > a on [0,T], then we call a(t) a lower solution
on [0,T). If ®(a)(t)+ ¥(a)(t) < aon [0,T], then a(t) is called an upper
solution on [0, T].

REMARKS. 1. a(t) is a solution of the integral equation (1.7) if and
only if a(t) is a lower and upper solution.

2. If a(t) is a lower solution, then ¢(a(0)) > a, hence a(0) < s(0).
In the same way, if a(?) is an upper solution, then a(0) > s(0).

3. If a(t) and F(t) are respectively lower and upper solution on [0, T
and a(0) < B(0), then a(t) < S(t) on [0, T].

In this section we show some properties of the function &.

LEMMA 2.1. Suppose a(t) = z¢ be a vertical line (zo > 0). Set
®(z9) = limyoo ®()(t), then the function ®(xo), defined for 0 < zg <
oo, satisfies the following:

(a) limZO_,o q’(l‘o) = 0,

(b) limzy—oe B(z0) = 1/2,

(c) ®'(z0) >0 for 0 < o < o0.

Proof. By the definition of ®, we have

a)(t) = / dr /z(:) — &t — 1)dE

/ dr I\(a:o —&,t—T1)dE.
0 —Zo
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Using the change of variables n =t — 7, we have
zo

B(a)(t) = / dn [ K(zo— € n)de.

—Zo

Therefore

o) = [ dn [ Koo - g n)ig

—Zo

(2.4) / dn / (=t

255

Now the proofs of (a) and (c) easily follow from (2.4). The proof of (b)

follows from the computations

faf Ooo K(-€mde = [ 1/2e7dn = 172

This completes the proof the lemma.

LEMMA 2.2. Suppose a(t) = ct is a linear function (¢ > 0). Set
®(c) = im¢oo ®(a)(t), then the function ®(c), defined for 0 < ¢ < oo,

satisfies the following:
(a) im0 ®(c) = 1/2,
(b) limc—oo ®(c) =0,
(c) ®'(¢) <0 for 0 < c< oo.

Proof. We have

a(r)
B(a)(t) = / dr / K(a(t) — €,t — 1)d¢

= -/0 dr/;ch(ct—f,t-- T)dE.

Using the change of variables n =t — 7, { = £ — ct, we have

B(a)(t /dn/_c" K(=C.n)dC.

cnp—2ct
Therefore

(2.5) wo) = ["an [ oo K(~C,n)dC.

The proof of the lemma easily follows from (2.5).
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3. Existence and uniqueness

In this section we state some results of existence and uniqueness of
solution s(t) of (1.7).

THEOREM 3.1. Assume that there exist linear functions a(t) and
B(t), which are respectively lower and upper solutions on [0, T| for some
positive time T, and e=*(T)/T < 1/4, then there exists a solution s(t) of
the integral equation (1.7) on [0, T}.

Proof. See [11], and [8] for other existence results.

We assume in this paper that the solution s(t) exists in all of R*. The
following theorem demonstrates that the solution s(t) of (1.7) is unique
among uniformly Lipschitz functions.

THEOREM 3.2. Suppose that a(t) and f(t) are respectively lower and
upper solutions on [0,T), then a(t) < B(t) on [0, T).

Proof. See [11].

4., The main theorem

Let a be a fixed constant in (0,1/2). We assume the initial datum
@(z) has a compact support. We denote the support of ¢(z) by S(¢),
and the integral [ _oooo @(x)dz by A(p). First, we prove the superthreshold
result.

THEOREM 4.1. For any d* > 0, there exist M*(d*) such that if p(z)
is a function satisfying S(p) C [—d*,d*] and A(p) > M*, then ¢(z) is
superthreshold.

Proof. We can choose ¢ such that ®(c) > a by Lemma 2.2. Let a(t)
be the curve defined by

0 for 0<iti<ty
Cl(t) = 7(t) for tl S t S tz
ct for t >,
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Here t; and ¢, are some numbers such that 0 < t; < t2, and v(t) is a
curve defined on [ty, t;] which connects the two curves smoothly. We can
easily show

tl_ggo ®(a)(t) = ®(c).

Therefore we can find T such that &(a)(t) > afort > T.
First, we estimate ¥(a)(t) for t € (0,t1].

va))= [ Klal) - (e

— 00

= [ K=&
p

> [ K oue

= K(—d*,t)A(y).

For a given time t > 0, the function ¥(z,t) in (2.1) takes its maximum at
z = 0. Therefore, from the maximum principle, ¥(a)(t) is a decreasing
function of t on [0,;]. Hence, on the interval [0, ¢;], we have

Y(a)(t) = K(=d*, 1) A(p).
Next, we estimate ¥(a)(t) in the interval [t;,T].

wa)t) = [ Ka(®) - & 0p(e)dt

-
- / ‘K(a(t)—ﬁ,t)w(f)dﬁ

-
> / K(a(t) + d*, t)p(€)dE

—d*
= K(a(t) + d*,t)A(p).

Put m = inf, <i<r{K(a(t) + d*,t)} > 0. Now we choose M* any
number bigger than maz{a/K(-d*,t,),a/m}. Suppose p(z) be a func-
tion such that S(p) C [-d*,d*] and A(p) > M*. Then ¥(a)(t) > a on
[0,T]. Since ®(a)(t) > a for t > T, we have

®(a)(t) + ¥(a)(t) > a, fort > 0.
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Hence a(t) is a lower solution. We have s(t) > a(t) for t > 0 by Theorem
3.2. Therefore lim; .o, s(t) = +o0o. Thus ¢(z) is superthreshold. This
completes the proof of the theorem.

Next, we prove the subthreshold result.

THEOREM 4.2. There exist positive constants d* and m* such that
if ¢(z) is a function satisfying S(yp) C [~d*,d*] and A(p) < m*, then
©(z) is subthreshold.

Proof. We can choose zo > 0 such that 0 < ®(z¢) < a by Lemma
2.1. Choose a positive number d* < z4. Set a(t) = x¢ be a vertical line.
Then, fort > 0

Q(a)(t) = /0 dr/; ’ K(zg — &t — 1)d€

Suppose ¢(z) be a function such that S(¢) C [-d*,d*]. Then

Y(a)(t) = / " K(zo — &, 0)p(E)dt

- OoQ

°
- / K(zo — & t)p(€)de

_d*
< K(zo —d*, t)A(yp).

It is clear that
tlim K(zo —d*,t)=0, }irr(l) K(zo —d*,t)=0.

Put I = supgcicoo K(zo — d*,1) < co. We choose m* a number less

than (a — ®(z¢))/L. Now, if A(¢) < m*, then
®(a)(t) + ¥(a)(t) < (z0) +a — B(xo) = q,

for all t > 0. Hence a(t) = z¢ is an upper solution. Therefore ¢(z) is
subthreshold. Now the proof is complete.
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