THRESHOLD RESULTS FOR THE MCKEAN EQUATION

Euiwoo Lee

1. Introduction

In 1952, British physiologists Hodgkin and Huxley [4] derived a model that describes the conduction of the nervous impulse in the optical nerve of a squid. The mathematical analysis of the Hodgkin-Huxley equations is technically very difficult, because of the complicated nonlinear functions in the equations. In the early 1960's FitzHugh and Nagumo [2], [9] derived a simpler formulation which retains most of the qualitative features of the original system, and yet is more amenable to analytical manipulations. The equation is

(1.1)
$$v_t = v_{xx} + f(v) - w$$
$$w_t = \epsilon(v - \gamma w),$$

where f(v) = v(1-v)(v-a) (0 < a < 1), $\epsilon \ge 0$, and $\gamma \ge 0$. McKean [6], [7] suggested a further simplification in which f(v) = v(1-v)(v-a) is replaced by f(v) = -v + H(v-a), where H is the Heaviside step function.

In this paper we consider the initial value problem for the equation

$$(1.2) v_t = v_{xx} + f(v),$$

the initial datum being $v(x,0) = \varphi(x)$. We assume that f(v) = -v + H(v-a), where H is the Heaviside step function and $a \in (0,1/2)$. Note that (1.2) is obtained by setting $\epsilon = 0$ and $w \equiv 0$ at (1.1).

Our primary interest is to study the asymptotic behavior of solutions of (1.2). One expects (1.2) to exhibit a threshold phenomenon. That is, if the initial datum is sufficiently small, then one expects the solutions

Received October 4, 1994. Revised November 18, 1994.

Key words: McKean equation, threshold phenomena, initial value problem.

of (1.2) to decay exponentially fast to zero as t goes to infinity. In this case, we say $\varphi(x)$ is subthreshold. This corresponds to the biological fact that a minimum amount of stimulus is needed to trigger a nerve impulse. One expects, however, that if $\varphi(x)$ is sufficiently large, or superthreshold, then some sort of signal will propagate. Threshold results for the equation (1.2) with smooth "cubic-like" function f have been given by Aronson and Weinberger [1]. Terman [11] showed if $\varphi(x) > a$ on a sufficiently large interval, then $\varphi(x)$ is superthreshold in the equation (1.2).

It was thought [3] that if $\varphi(x)$ has a small compact support, that is, $\varphi(x) \equiv 0$ outside some interval [-d,d] for small d, then the integral of $\varphi(x)$ is a crucial factor in the threshold phenomenon. In this paper we give a rigorous mathematical proof of this fact in the equation (1.2).

Throughout this paper we assume that the initial datum $\varphi(x)$ satisfies the following conditions:

- (a) $\varphi(x) \in \mathcal{C}^1(R)$, (b) $\varphi(x) \in [0, \infty)$ in R,
- (c) $\varphi(x) = \varphi(-x)$ in R, (d) $\varphi'(x) \le 0$ in R^+ ,
- (e) $\lim_{x\to+\infty} \varphi(x) = 0$.

By a classical solution of equation (1.2) we mean the following:

DEFINITION. Let $S_T = R \times (0, T)$ and $G_T = \{(x, t) \in S_T, v(x, t) \neq a\}$. Then v(x, t) is said to be a classical solution of the Cauchy problem (1.2) if

- (a) The functions v and v_x are bounded, continuous in S_T .
- (b) The functions v_{xx} and v_t are continuous in G_T , and satisfy the equation

$$v_t = v_{xx} + f(v).$$

(c) $\lim_{t\to 0} v(x,t) = \varphi(x)$ for each $x \in R$.

If $\varphi(0) < a$, then v(x,t) < a in $R \times R^+$ by the maximum principle [10, pp. 159-72]. Hence v satisfies the linear partial differential equation $v_t = v_{xx} - v$. Therefore $v(x,t) \le e^{-t}\varphi(0)$, so v(x,t) decays exponentially fast to 0. This is a simple case for the initial datum to be subthreshold. Throughout this paper we assume that $\varphi(0) \ge a$. We consider the curve s(t) defined by

(1.3)
$$s(t) = \sup\{x : v(x,t) = a\}.$$

We say that the initial datum is superthreshold if $\lim_{t\to\infty} s(t) = +\infty$, and subthreshold if s(t) is bounded above by a constant x_0 for all $t \geq 0$.

Since $\varphi'(x) \leq 0$ in R^+ , we expect that $v_x(x,t) < 0$ in $R^+ \times R^+$. Therefore s(t) is a well defined, continuous function for some time, say $t \in [0,T]$. It follows that v > a for |x| < s(t), and v < a for |x| > s(t). Let χ_{Ω} be the indicator function of the subset

(1.4)
$$\Omega = \{(x,t) : v(x,t) > a, 0 \le t \le T\}.$$

Then v(x,t) satisfies the inhomogeneous equation

$$(1.5) v_t = v_{xx} - v + \chi_{\Omega} \text{ for } |x| \neq s(t).$$

By Duhamel's principle, the solution can be expressed as

$$(1.6) \ v(x,t) = \int_{-\infty}^{\infty} K(x-\xi,t)\varphi(\xi)d\xi + \int_{0}^{t} d\tau \int_{-s(\tau)}^{s(\tau)} K(x-\xi,t-\tau)d\xi,$$

where $K(x,t) = (e^{-t}/2\sqrt{\pi t})e^{-x^2/4t}$ is the fundamental solution of the differential equation $\psi_t = \psi_{xx} - \psi$. Setting x = s(t) in (1.6), we have the integral equation

$$(1.7) \ \ a = \int_{-\infty}^{\infty} K(s(t) - \xi, t) \varphi(\xi) d\xi + \int_{0}^{t} d\tau \int_{-s(\tau)}^{s(\tau)} K(s(t) - \xi, t - \tau) d\xi.$$

The following theorem shows that the solution of (1.2) is completely determined by the curve s(t).

THEOREM 1.1. Suppose that s(t) is a continuously differentiable function which satisfies the integral equation (1.7) in [0,T], then the function v(x,t) given by (1.6) is a classical solution of the equation (1.2) in $R \times [0,T]$.

Proof. See [11].

2. Lower and upper solutions

Let $\psi(x,t)$ be the solution of the initial value problem

(2.1)
$$\psi_t = \psi_{xx} - \psi, \ (x,t) \in R \times R^+$$
$$\psi(x,0) = \varphi(x), \ x \in R.$$

Then $\psi(x,t) = \int_{-\infty}^{\infty} K(x-\xi,t)\varphi(\xi)d\xi$. Assume $\alpha(t)$ is a nonnegative, uniformly Lipschitz continuous function defined for $t \in [0,T]$. We define the functions $\Phi(\alpha)(t)$ and $\Psi(\alpha)(t)$ on the interval [0,T] by

(2.2)
$$\Phi(\alpha)(t) = \int_0^t d\tau \int_{-\alpha(\tau)}^{\alpha(\tau)} K(\alpha(t) - \xi, t - \tau) d\xi,$$
(2.3)
$$\Psi(\alpha)(t) = \psi(\alpha(t), t).$$

Note that $\lim_{t\to 0} \Psi(\alpha)(t) = \varphi(\alpha(0))$.

If $\Phi(\alpha)(t) + \Psi(\alpha)(t) \geq a$ on [0,T], then we call $\alpha(t)$ a lower solution on [0,T]. If $\Phi(\alpha)(t) + \Psi(\alpha)(t) \leq a$ on [0,T], then $\alpha(t)$ is called an upper solution on [0,T].

REMARKS. 1. $\alpha(t)$ is a solution of the integral equation (1.7) if and only if $\alpha(t)$ is a lower and upper solution.

- **2.** If $\alpha(t)$ is a lower solution, then $\varphi(\alpha(0)) \geq a$, hence $\alpha(0) \leq s(0)$. In the same way, if $\alpha(t)$ is an upper solution, then $\alpha(0) \geq s(0)$.
- 3. If $\alpha(t)$ and $\beta(t)$ are respectively lower and upper solution on [0, T] and $\alpha(0) < \beta(0)$, then $\alpha(t) < \beta(t)$ on [0, T].

In this section we show some properties of the function Φ .

LEMMA 2.1. Suppose $\alpha(t) = x_0$ be a vertical line $(x_0 > 0)$. Set $\Phi(x_0) = \lim_{t\to\infty} \Phi(\alpha)(t)$, then the function $\Phi(x_0)$, defined for $0 < x_0 < \infty$, satisfies the following:

- (a) $\lim_{x_0 \to 0} \Phi(x_0) = 0$,
- (b) $\lim_{x_0 \to \infty} \Phi(x_0) = 1/2$,
- (c) $\Phi'(x_0) > 0$ for $0 < x_0 < \infty$.

Proof. By the definition of Φ , we have

$$\begin{split} \Phi(\alpha)(t) &= \int_0^t d\tau \int_{-\alpha(\tau)}^{\alpha(\tau)} K(\alpha(t) - \xi, t - \tau) d\xi \\ &= \int_0^t d\tau \int_{-x_0}^{x_0} K(x_0 - \xi, t - \tau) d\xi. \end{split}$$

Using the change of variables $\eta = t - \tau$, we have

$$\Phi(\alpha)(t) = \int_0^t d\eta \int_{-x_0}^{x_0} K(x_0 - \xi, \eta) d\xi.$$

Therefore

(2.4)
$$\Phi(x_0) = \int_0^\infty d\eta \int_{-x_0}^{x_0} K(x_0 - \xi, \eta) d\xi$$
$$= \int_0^\infty d\eta \int_{-2x_0}^0 K(-\xi, \eta) d\xi.$$

Now the proofs of (a) and (c) easily follow from (2.4). The proof of (b) follows from the computations

$$\int_0^\infty d\eta \int_{-\infty}^0 K(-\xi, \eta) d\xi = \int_0^\infty 1/2e^{-\eta} d\eta = 1/2.$$

This completes the proof the lemma.

LEMMA 2.2. Suppose $\alpha(t) = ct$ is a linear function (c > 0). Set $\Phi(c) = \lim_{t\to\infty} \Phi(\alpha)(t)$, then the function $\Phi(c)$, defined for $0 < c < \infty$, satisfies the following:

- (a) $\lim_{c\to 0} \Phi(c) = 1/2$,
- (b) $\lim_{c\to\infty} \Phi(c) = 0$,
- (c) $\Phi'(c) < 0$ for $0 < c < \infty$.

Proof. We have

$$\Phi(\alpha)(t) = \int_0^t d\tau \int_{-\alpha(\tau)}^{\alpha(\tau)} K(\alpha(t) - \xi, t - \tau) d\xi$$
$$= \int_0^t d\tau \int_{-\alpha\tau}^{c\tau} K(ct - \xi, t - \tau) d\xi.$$

Using the change of variables $\eta = t - \tau$, $\zeta = \xi - ct$, we have

$$\Phi(\alpha)(t) = \int_0^t d\eta \int_{c\eta-2ct}^{-c\eta} K(-\zeta,\eta) d\zeta.$$

Therefore

(2.5)
$$\Phi(c) = \int_0^\infty d\eta \int_{-\infty}^{-c\eta} K(-\zeta, \eta) d\zeta.$$

The proof of the lemma easily follows from (2.5).

3. Existence and uniqueness

In this section we state some results of existence and uniqueness of solution s(t) of (1.7).

THEOREM 3.1. Assume that there exist linear functions $\alpha(t)$ and $\beta(t)$, which are respectively lower and upper solutions on [0,T] for some positive time T, and $e^{-\alpha(T)/T} \leq 1/4$, then there exists a solution s(t) of the integral equation (1.7) on [0,T].

Proof. See [11], and [8] for other existence results.

We assume in this paper that the solution s(t) exists in all of R^+ . The following theorem demonstrates that the solution s(t) of (1.7) is unique among uniformly Lipschitz functions.

THEOREM 3.2. Suppose that $\alpha(t)$ and $\beta(t)$ are respectively lower and upper solutions on [0,T], then $\alpha(t) \leq \beta(t)$ on [0,T].

Proof. See [11].

4. The main theorem

Let a be a fixed constant in (0, 1/2). We assume the initial datum $\varphi(x)$ has a compact support. We denote the support of $\varphi(x)$ by $S(\varphi)$, and the integral $\int_{-\infty}^{\infty} \varphi(x)dx$ by $A(\varphi)$. First, we prove the superthreshold result.

THEOREM 4.1. For any $d^* > 0$, there exist $M^*(d^*)$ such that if $\varphi(x)$ is a function satisfying $S(\varphi) \subset [-d^*, d^*]$ and $A(\varphi) > M^*$, then $\varphi(x)$ is superthreshold.

Proof. We can choose c such that $\Phi(c) > a$ by Lemma 2.2. Let $\alpha(t)$ be the curve defined by

$$\alpha(t) = \begin{cases} 0 & \text{for} \quad 0 \le t < t_1 \\ \gamma(t) & \text{for} \quad t_1 \le t \le t_2 \\ ct & \text{for} \quad t > t_2. \end{cases}$$

Here t_1 and t_2 are some numbers such that $0 < t_1 < t_2$, and $\gamma(t)$ is a curve defined on $[t_1, t_2]$ which connects the two curves smoothly. We can easily show

$$\lim_{t\to\infty}\Phi(\alpha)(t)=\Phi(c).$$

Therefore we can find T such that $\Phi(\alpha)(t) \geq a$ for $t \geq T$. First, we estimate $\Psi(\alpha)(t)$ for $t \in (0, t_1]$.

$$\begin{split} \Psi(\alpha)(t) &= \int_{-\infty}^{\infty} K(\alpha(t) - \xi, t) \varphi(\xi) d\xi \\ &= \int_{-d^*}^{d^*} K(-\xi, t) \varphi(\xi) d\xi \\ &\geq \int_{-d^*}^{d^*} K(-d^*, t) \varphi(\xi) d\xi \\ &= K(-d^*, t) A(\varphi). \end{split}$$

For a given time t > 0, the function $\psi(x,t)$ in (2.1) takes its maximum at x = 0. Therefore, from the maximum principle, $\Psi(\alpha)(t)$ is a decreasing function of t on $[0, t_1]$. Hence, on the interval $[0, t_1]$, we have

$$\Psi(\alpha)(t) \ge K(-d^*, t_1)A(\varphi).$$

Next, we estimate $\Psi(\alpha)(t)$ in the interval $[t_1, T]$.

$$\begin{split} \Psi(\alpha)(t) &= \int_{-\infty}^{\infty} K(\alpha(t) - \xi, t) \varphi(\xi) d\xi \\ &= \int_{-d^*}^{d^*} K(\alpha(t) - \xi, t) \varphi(\xi) d\xi \\ &\geq \int_{-d^*}^{d^*} K(\alpha(t) + d^*, t) \varphi(\xi) d\xi \\ &= K(\alpha(t) + d^*, t) A(\varphi). \end{split}$$

Put $m=\inf_{t_1\leq t\leq T}\{K(\alpha(t)+d^*,t)\}>0$. Now we choose M^* any number bigger than $\max\{a/K(-d^*,t_1),a/m\}$. Suppose $\varphi(x)$ be a function such that $S(\varphi)\subset [-d^*,d^*]$ and $A(\varphi)>M^*$. Then $\Psi(\alpha)(t)\geq a$ on [0,T]. Since $\Phi(\alpha)(t)\geq a$ for $t\geq T$, we have

$$\Phi(\alpha)(t) + \Psi(\alpha)(t) \ge a$$
, for $t > 0$.

Hence $\alpha(t)$ is a lower solution. We have $s(t) \geq \alpha(t)$ for $t \geq 0$ by Theorem 3.2. Therefore $\lim_{t\to\infty} s(t) = +\infty$. Thus $\varphi(x)$ is superthreshold. This completes the proof of the theorem.

Next, we prove the subthreshold result.

THEOREM 4.2. There exist positive constants d^* and m^* such that if $\varphi(x)$ is a function satisfying $S(\varphi) \subset [-d^*, d^*]$ and $A(\varphi) < m^*$, then $\varphi(x)$ is subthreshold.

Proof. We can choose $x_0 > 0$ such that $0 < \Phi(x_0) < a$ by Lemma 2.1. Choose a positive number $d^* < x_0$. Set $\alpha(t) = x_0$ be a vertical line. Then, for $t \geq 0$

$$\Phi(\alpha)(t) = \int_0^t d\tau \int_{-x_0}^{x_0} K(x_0 - \xi, t - \tau) d\xi$$

$$\leq \Phi(x_0).$$

Suppose $\varphi(x)$ be a function such that $S(\varphi) \subset [-d^*, d^*]$. Then

$$\Psi(\alpha)(t) = \int_{-\infty}^{\infty} K(x_0 - \xi, t) \varphi(\xi) d\xi$$
$$= \int_{-d^*}^{d^*} K(x_0 - \xi, t) \varphi(\xi) d\xi$$
$$\leq K(x_0 - d^*, t) A(\varphi).$$

It is clear that

$$\lim_{t \to \infty} K(x_0 - d^*, t) = 0, \ \lim_{t \to 0} K(x_0 - d^*, t) = 0.$$

Put $L = \sup_{0 < t < \infty} K(x_0 - d^*, t) < \infty$. We choose m^* a number less than $(a - \Phi(x_0))/L$. Now, if $A(\varphi) < m^*$, then

$$\Phi(\alpha)(t) + \Psi(\alpha)(t) \le \Phi(x_0) + a - \Phi(x_0) = a,$$

for all $t \geq 0$. Hence $\alpha(t) = x_0$ is an upper solution. Therefore $\varphi(x)$ is subthreshold. Now the proof is complete.

References

- D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation, Proc. Tulane Program in Partial Differential Equations, Lecture Notes in Math. 446 (1975), 5-49, Springer-Verlag: New York.
- 2. R. Fitzhugh, Impulses and physiological states in models of nerve membrane, Biophys. J. 1 (1961), 445-466.
- S. P. Hastings, Some mathematical problems in neurobiology, Amer. Math. Monthly 82 (1975), 881-895.
- 4. A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117 (1952), 500-544.
- F. John, Partial Differential Equations, Springer-Verlag: New York, Heidelberg, Berlin, 1983.
- 6. H. P. Mckean, Nagumo's equation, Adv. in Math. 4 (1970), 209-223.
- 7. H. P. Mckean, Stablization of solutions of a caricature of the Fitzhugh-Nagumo equation, Comm. Pure Appl. Math. 36 (1983), 291-324.
- 8. H. P. Mckean and V. Moll, Stablization to the standing wave in a simple caricature of the nerve equation, Comm. Pure Appl. Math. 39 (1986), 485-529.
- 9. J. Nagumo, S. Aritomo, and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1964), 2061-2070.
- 10. M. H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall: Englewood Cliffs, NJ, 1967.
- 11. D. Terman, A free boundary problem arising from a bistable reaction-diffusion equation, SIAM J. Math. Anal. 14 (1983), 1107-1129.

Department of Mathematics Soongsil University Seoul, Korea