ON MEASURABLE SPACES AND SEMI-TOPOGENOUS SPACES

BYUNG SIK IN

We are to present some properties of binary relations by means of categorical method. The concept of semi-topogenous structures is due to Császár.

Using this, we give a new definition of a σ -topogenous structure as a particular type of semi-topogenous structure.

In this paper, we concern with the relationships between \underline{Mes} (the category of measurable spaces) and subcategories of \underline{ST} (the category of semi-topogeous spaces), and study some properties of these categories.

Further, it turn out that \underline{Mes} , $\underline{\sigma TS}$ (the category of σ -topologeous spaces) resp. are coreflective subcategories of \underline{IST} (the category of interpolation semi-topogenous spaces), \underline{ST} resp..

Also, we construct the category $\sigma ISTG$ (the category of interpolation symmetrical σ -topogeous spaces with generating sets) as a coreflective subcategory of \underline{IST} , which is isomorphic to \underline{Mes} .

Finally we obtain that the functor $G: \underline{\sigma Latt} \longrightarrow \underline{\sigma TS}$ is a full embedding, where $\underline{\sigma Latt}$ is the category of σ -lattices and isotone maps.

1. Preliminaries

In this section we introduce categorical properties of the category <u>Mes</u> of measurable spaces and measurable maps.

DEFINITION 1.1. Let X be a set. A collection \mathcal{A} of subsets of X is called a σ -algebra on X if the following conditions are satisfied:

- (i) $X \in \mathcal{A}$,
- (ii) for each $A \in \mathcal{A}$, $A^c \in \mathcal{A}$,
- (iii) for each infinite sequence (A_i) $(i \in I)$ of sets such that $A_i \in \mathcal{A}$, $A_i \in \mathcal{A}$ $(i \in I)$, where I is any countable set of indices.

In this case (X, A) is called a measurable space.

Received June 20, 1994. Revised August 11, 1994.

This paper was supported by the UNJUNG Scholarship Foundation.

DEFINITION 1.2. Let (X, \mathcal{A}) and (Y, \mathcal{A}') be measurable spaces. A map $f: X \longrightarrow Y$ is said to be measurable if $f^{-1}(A') \in \mathcal{A}$ for each $A' \in \mathcal{A}'$.

NOTATION. The class of all measurable spaces and measurable maps forms a category, which is denoted by <u>Mes</u>.

THEOREM 1.3. The category <u>Mes</u> is topological.

Proof. Let X be a set, $((X_{\alpha}, \mathcal{A}_{\alpha}))_{\alpha \in \Lambda}$ a family of measurable spaces and $(f_{\alpha}: X \longrightarrow X_{\alpha})_{\alpha \in \Lambda}$ a source. Let \mathcal{A} be the σ -algebra generated by $\{f_{\alpha}^{-1}(A_{\alpha})|A_{\alpha}\in \mathcal{A}_{\alpha}, \alpha\in\Lambda\}$. Then (X,\mathcal{A}) is a measurable space and $f_{\alpha}: (X,\mathcal{A}) \longrightarrow (X_{\alpha},\mathcal{A}_{\alpha})$ is measurable for all $\alpha\in\Lambda$. For any measurable space (Y,\mathcal{B}) , let $g:(Y,\mathcal{B}) \longrightarrow (X,\mathcal{A})$ be a map such that for all $\alpha\in\Lambda$, $f_{\alpha}\circ g:(Y,\mathcal{B}) \longrightarrow (X_{\alpha},\mathcal{A}_{\alpha})$ is measurable. For any $\alpha\in\Lambda$ and $A_{\alpha}\in\mathcal{A}_{\alpha}$, $(f_{\alpha}\circ g)^{-1}(A_{\alpha})=g^{-1}(f_{\alpha}^{-1}(A_{\alpha}))\in\mathcal{B}$. Hence $g^{-1}(\mathcal{A})\subseteq\mathcal{B}$, because \mathcal{A} is generated by $\{f_{\alpha}^{-1}(A_{\alpha})|A_{\alpha}\in\mathcal{A}_{\alpha}, \alpha\in\Lambda\}$; so g is measurable. This completes the proof.

COROLLARY 1.4. The category <u>Mes</u> is cotopological, complete and cocomplete.

COROLLARY 1.5. The forgetful functor $U: \underline{Mes} \longrightarrow \underline{Set}$ has a left adjoint.

Proof. Since $U: \underline{Mes} \longrightarrow \underline{Set}$ is topological, it has a left adjoint.

2. Semi-topogenous spaces

The following definitions are due to Császár [7].

DEFINITION 2.1. Let X be a set. Then a relation < on $\mathcal{P}(X)$ is called a semi-topogenous structure on X if it satisfies the following conditions:

- (i) $\phi < \phi, X < X$;
- (ii) A < B implies $A \subset B$;
- (iii) $A \subset A' < B' \subset B$ implies A < B.

The ordered pair (X, <) is called a semi-topogenous space.

DEFINITION 2.2. Let X be a set and \mathcal{F} a family of subsets of X with $\phi, X \in \mathcal{F}$. Then a semi-topogenous structure on X is said to be generated by \mathcal{F} (or \mathcal{F} is the generating system of sets) if it satisfies the following condition;

A < B iff there is a set $S \in \mathcal{F}$ such that $A \subset S \subset B$.

Example 2.3. For any measurable space (X, \mathcal{A}) , define $<_{\mathcal{A}}$ on $\mathcal{P}(X)$ as follows:

 $A <_{\mathcal{A}} B$ iff there is $S \in \mathcal{A}$ such that $A \subset S \subset B$. Then $<_{\mathcal{A}}$ is a semi-topogenous structure on X.

DEFINITION 2.4. Let (X, <) and (Y, <') be semi-topogenous spaces and $f: X \longrightarrow Y$ a map.

Then f is said to be continuous if for A' < B', $f^{-1}(A') < f^{-1}(B')$.

PROPOSITION 2.5. 1) If (X, <) is any semi-topogenous space, then the identity map $1_X : (X, <) \longrightarrow (X, <)$ is continuous.

2) If $f:(X,<) \longrightarrow (Y,<')$ continuous and $g:(Y,<') \longrightarrow (Z,<'')$ continuous, then $g \circ f:(X,<) \longrightarrow (Z,<'')$ is also continuous.

Proof. It follows immediately from the definition.

We can easily obtain the following category from Proposition 2.5.

NOTATION. The class of all semi-topogenous spaces and continuous maps between them forms a category, which will be denoted by \underline{ST} .

PROPOSITION 2.6. Let (X, A) and (Y, A') be measurable spaces. Then $f: (X, A) \longrightarrow (Y, A')$ be measurable iff $f: (X, <_A) \longrightarrow (Y, <_{A'})$ is continuous.

Proof. (\Rightarrow) Let $A' <_{\mathcal{A}'} B'$. Then there is $S' \in \mathcal{A}'$ such that $A' \subset S' \subset B'$. Since f is measurable, $f^{-1}(S') \in \mathcal{A}$ and $f^{-1}(A') \subset f^{-1}(S') \subset f^{-1}(B')$. Thus $f^{-1}(A') <_{\mathcal{A}} f^{-1}(B')$ and hence f is continuous.

 (\Leftarrow) Let $A' \in \mathcal{A}'$. Then $A' <_{\mathcal{A}'} A'$.

Since f is continuous, $f^{-1}(A') <_{\mathcal{A}} f^{-1}(A')$ and hence $f^{-1}(A') \in \mathcal{A}$. Thus f is measurable.

COROLLARY 2.7. The functor $F: \underline{Mes} \longrightarrow \underline{ST}$ defined by $F(X, A) = (X, <_A)$ and F(f) = f, is a full embedding.

Proof. It is immediate from Proposition 2.6.

DEFINITION 2.8. Let (X, <) be a semi-topogenous space and define a relation $<^c$ on P(X) by $A <^c B$ iff X - B < X - A. Then $<^c$ is called the complement of <. If $<=<^c$, then < is said to be symmetrical. In this case (X, <) is called a symmetrical semi-topogenous space.

DEFINITION 2.9. A semi-topogenous structure < on X is called a σ -topogenous structure if for $A_i < B_i (i \in I)$, $\bigcup_{i \in I} A_i < \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} A_i < \bigcap_{i \in I} B_i$, where I denotes any countable set of indices. In this case, (X, <) is called a σ -topogenous space.

REMARK 2.10. Let (X, A) be any measurable space. Then $(X, <_A)$ is a symmetrical σ -topogenous space.

Proof. For any $(X, \mathcal{A}) \in \underline{Mes}$, we define a relation $<_{\mathcal{A}}$ on P(X) by $A <_{\mathcal{A}} B$ iff there is $S \in \mathcal{A}$ such that $A \subset S \subset B$. Then $X - B \subset X - S \subset X - A$ for some $X - S \in \mathcal{A}$, so that $(X, <_{\mathcal{A}})$ is symmetrical. In order to show that $(X, <_{\mathcal{A}})$ is a σ -topogenous space, let $A_i <_{\mathcal{A}} B_i (i \in I)$, where I is any countable index set. Then there is $S_i \in \mathcal{A}(i \in I)$ such that $A_i \subset S_i \subset B_i (i \in I)$, so we have $\bigcup_{i \in I} A_i \subset \bigcup_{i \in I} S_i \subset \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} A_i \subset \bigcap_{i \in I} S_i \subset \bigcap_{i \in I} B_i$. Thus $\bigcup_{i \in I} A_i <_{\mathcal{A}} \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} A_i <_{\mathcal{A}} \bigcap_{i \in I} B_i$ since $\bigcup_{i \in I} S_i, \bigcap_{i \in I} S_i \in \mathcal{A}$.

NOTATION. The full subcategory of <u>ST</u> determined by σ -topogenous spaces will be denoted by $\underline{\sigma TS}$.

Theorem 2.11. The category σTS is coreflective in ST.

Proof. Let $(X, <) \in \underline{ST}$ and define a relation $<^{\sigma}$ on P(X) as follows: $A <^{\sigma} B$ iff there are sequence $(A_i)_{i \in I}$ and $(B_j)_{j \in J}$ such that $A = \bigcup_{i \in I} A_i, B = \bigcap_{j \in J} B_j$ and $A_i < B_j (i \in I, j \in J)$, where I and J are countable sets of indices. Then we can easily get that $<^{\sigma}$ is a semitopogenous structure.

Let us prove that $<^{\sigma}$ is a σ -topogenous structure. Suppose $A_k <^{\sigma} B_k (k \in K)$ for any countable index set K.

Then $A_k = \bigcup_{i \in I} A_{ki}$, $B_k = \bigcap_{j \in J} B_{kj}$ and $A_{ki} < B_{kj} (k \in K, i \in I, j \in J)$; so $\bigcup_{k \in K} A_k = \bigcup_{k \in K} (\bigcup_{i \in I} A_{ki}) = \bigcup_{i \in I} (\bigcup_{k \in K} A_{ki})$, $\bigcup_{k \in K} B_k = \bigcup_{k \in K} (\bigcap_{j \in J} B_{kj}) = \bigcap_{\{j_k\} \in J^K} (\bigcup_{k \in K} B_{kj_k})$ and $\bigcup_{k \in K} A_{ki} < \bigcup_{k \in K} B_{kj_k}$. It follows that $\bigcup_{k \in K} A_k < \sigma \bigcup_{k \in K} B_k$.

Similarly, we obtain that $\bigcap_{k \in K} A_k <^{\sigma} \bigcap_{k \in K} B_k$. Thus $<^{\sigma}$ is a σ -topogenous structure, evidently finer than <, consequently $(X, <^{\sigma}) \in$

 $\underline{\sigma TS}$ and the identity map $1_X: (X, <^{\sigma}) \longrightarrow (X, <)$ is continuous. Take any $(Y, <') \in \underline{\sigma TS}$ and any continuous $f: (Y, <') \longrightarrow (X, <)$. Since $(Y, <') \in \underline{\sigma TS}, (Y, <') = (Y, <'^{\sigma})$, and so $f: (Y, <') \longrightarrow (X, <^{\sigma})$ is continuous. Moreover, such an f is unique because 1_X is bijective. Thus $1_X: (X, <^{\sigma}) \longrightarrow (X, <)$ is the $\underline{\sigma TS}$ -coreflection of (X, <).

DEFINITION 2.12. Let (X, <) be a semi-topogenous space. Then < is called an interpolation semi-topogenous structure if for A < B, there is a subset S of X such that A < S < B.

REMARK 2.13. For any $(X, A) \in \underline{Mes}, <_{A}$ is an interpolation semitopogenous structure on X.

Proof. Suppose $A <_{\mathcal{A}} B$. Since $<_{\mathcal{A}}$ is a semi-topogenous structure, there is $S \in \mathcal{A}$ such that $A \subset S \subset B$. Hence $A \subset S \subset S$ and $S \subset S \subset B$ imply $A <_{\mathcal{A}} S$ and $S <_{\mathcal{A}} B$. Thus the proposition is proved.

NOTATION. The full subcategory of <u>ST</u> determined by interpolation semi-topogenous spaces (interpolation σ -topogenous spaces, interpolation symmetrical σ -topogenous spaces, interpolation symmetrical σ -topogenous spaces with generating sets) will be denoted by $\underline{IST}(\sigma IT, \sigma IST, \sigma ISTG)$.

Theorem 2.14. The category σIT is coreflective in IST.

Proof. Let $(X, <) \in \underline{IST}$ and define a relation $<^{\sigma}$ on P(X) as follows: $A <^{\sigma} B$ iff there are sequences $(A_i)_{i \in I}$, $(B_i)_{i \in I}$, $(A_{ij})_{j \in J}$, $(B_{ij})_{j \in J}$ and $(C_{ij})_{j \in J}$ such that

$$A = \bigcup_{i \in I} A_i, B = \bigcup_{i \in I} B_i, C = \bigcup_{i \in I} C_i,$$

$$A_i = \bigcap_{j \in J} A_{ij}, B_i = \bigcap_{j \in J} B_{ij}, C_i = \bigcap_{j \in J} C_{ij},$$

$$A_{ij} < C_{ij} < B_{ij} (i \in I, j \in J)$$

where I and J are countable sets of indices.

By the definition of $<^{\sigma}$, we can easily show that $<^{\sigma}$ is an interpolation semi-topogenous structure.

Moreover, as in proof of Theorem 2.11, $<^{\sigma}$ is a σ -topogenous structure. Hence $(X,<^{\sigma})\in\underline{\sigma IT}$ and the identity map $1_X:(X,<^{\sigma})\longrightarrow(X,<)$ is continuous.

Take any $(Y, <') \in \underline{\sigma IT}$ and any continuous $f: (Y, <') \longrightarrow (X, <)$. Since $(Y, <') \in \underline{\sigma IT}$, $(Y, <') = (Y, <'^{\sigma})$, so that $f: (Y, <') \longrightarrow (X, <^{\sigma})$ is continuous. Furthermore, such an f is unique.

Thus $1_X: (X, <^{\sigma}) \longrightarrow (X, <)$ is the $\underline{\sigma IT}$ -coreflection of (X, <).

COROLLARY 2.15. (1) The category σIST is coreflective in σIT .

(2) The category $\sigma ISTG$ is coreflective in σIST .

THEOREM 2.16. The categories $\sigma ISTG$ and Mes are isomorphic.

Proof. For any $(X,<) \in \underline{\sigma ISTG}$, let $\mathcal{A}_{<} = \{A \subset X \mid A < A\}$. Then it is clear that $(X,\mathcal{A}_{<}) \in \underline{Mes}$. If $f:(X,<) \longrightarrow (Y,<')$ is continuous ,then $f:(X,\mathcal{A}_{<}) \longrightarrow (Y,\mathcal{A}_{<'})$ is measurable. Thus $G:\underline{\sigma ISTG} \longrightarrow \underline{Mes}$ is a functor defined by $G(X,<) = (X,\mathcal{A}_{<})$ and G(f) = f. Conversely, for any $(X,\mathcal{A}) \in \underline{Mes}$, we define a relation $<_{\mathcal{A}}$ on P(X) as follows: $A <_{\mathcal{A}} B$ iff there is $S \in \mathcal{A}$ such that $A \subset S \subset B$. By Remark 2.11 and Theorem 2.14, we have $(X,<_{\mathcal{A}}) \in \underline{\sigma ISTG}$. Suppose $g:(X,\mathcal{A}) \longrightarrow (Y,\mathcal{A}')$ is measurable, then $g:(X,<_{\mathcal{A}}) \longrightarrow (Y,<_{\mathcal{A}'})$ is continuous. Thus $F:\underline{Mes} \longrightarrow \underline{\sigma ISTG}$ is a functor defined by $F(X,\mathcal{A}) = (X,<_{\mathcal{A}})$ and F(g) = g. Moreover, for any $(X,<) \in \underline{\sigma ISTG}$, $F(G(X,<)) = F(X,\mathcal{A}_{<}) = (X,<_{\mathcal{A}_{<}})$. Since $A <_{\mathcal{A}_{<}} B$ iff there is $S \in \mathcal{A}_{<}$ such that $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S \subset B$ iff $A \subset S \subset B$ and $A \subset S \subset B$ iff $A \subset S$

Theorem 2.17. The category \underline{Mes} is coreflective in \underline{IST}

Proof. It follows from Theorem 2.14, Corollary 2.15 and Theorem 2.16.

We have the following by the above theorem and Theorem 1.3.

Theorem 2.18. The category $\sigma ISTG$ has the following:

- (1) $\sigma ISTG$ is topological and cotopological.
- (2) <u>\sigma ISTG</u> is complete and cocomplete.
- (3) The forgetful functor $U : \underline{\sigma ISTG} \longrightarrow \underline{Set}$ has a left adjoint.

PROPOSITION 2.19. Let \mathcal{L} be a lattice of subsets of a set X with $\phi, X \in \mathcal{L}$ and let < be a semi-topogenous structure generated by \mathcal{L} . Then < is a σ -topogenous structure iff \mathcal{L} is closed under countable unions and intersections.

Proof. (\Rightarrow) If < is a σ -topogenous structure and $S_i \in \mathcal{L}(i \in I)$ for any countable index set I, then $\bigcup_{i \in I} S_i < \bigcup_{i \in I} S_i$ and $\bigcap_{i \in I} S_i < \bigcap_{i \in I} S_i$. Hence $\bigcup_{i \in I} S_i, \bigcap_{i \in I} S_i \in \mathcal{L}$.

 (\Leftarrow) If $A_i < B_i (i \in I)$, then there is $S_i \in \mathcal{L}(i \in I)$ such that $A_i \subset S_i \subset B_i, (i \in I)$. Hence $\bigcup_{i \in I} A_i < \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} A_i < \bigcap_{i \in I} B_i$, because $\bigcup_{i \in I} S_i, \bigcap_{i \in I} S_i \in \mathcal{L}$.

DEFINITION 2.20. Let X be a lattice. Then X is called a σ -lattice if every countable subset D of X has a join $\bigvee D$ and a meet $\bigwedge D$.

PROPOSITION 2.21. Let (X, \leq) be any σ -lattice and let $<_{\leq}$ be a relation on P(X) defined by $A <_{\leq} B$ iff $\uparrow A \subset B$. Then $<_{\leq}$ is a σ -topogenous structure on X.

Proof. Since $\uparrow \phi = \phi$ and $\uparrow X = X, \phi <_{\leq} \phi$ and $X <_{\leq} X$. If $A <_{\leq} B$, then $\uparrow A \subset B$. Since $A \subset \uparrow A, A \subset B$. Suppose $A' \subset A <_{\leq} B \subset B'$, then $\uparrow A \subset B$. Since $\uparrow A' \subset \uparrow A, \uparrow A' \subset B'$, so we have $A' <_{\leq} B'$. Thus $<_{\leq}$ is a semi-topogenous structure. We claim that $<_{\leq}$ is a σ -topogenous structure. Suppose $A_i <_{\leq} B_i (i \in I)$ for any countable index set I, then $\uparrow A_i \subset B_i (i \in I)$, so that $\bigcup_{i \in I} (\uparrow A_i) \subset \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} (\uparrow A_i) \subset \bigcap_{i \in I} B_i$ i.e., $\uparrow (\bigcup_{i \in I} A_i) \subset \bigcup_{i \in I} B_i$ and $\uparrow \bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} B_i$ because $\uparrow (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (\uparrow A_i)$ and $\uparrow (\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} (\uparrow A_i)$. Hence $\bigcup_{i \in I} A_i <_{\leq} \bigcup_{i \in I} B_i$ and $\bigcap_{i \in I} A_i <_{\leq} \bigcap_{i \in I} B_i$. This completes the proof.

THEOREM 2.22. Let (X, \leq) and (Y, \leq') be σ -lattices. Then $f: (X, \leq) \longrightarrow (Y, \leq')$ is an isotone map iff $f: (X, <_{\leq}) \longrightarrow (Y, <_{\leq'})$ is a continuous map.

Proof. (\Rightarrow) Let $A' <_{\leq'} B'$ and $x \in \uparrow f^{-1}(A')$. Then there is $a \in f^{-1}(A')$ such that $a \leq x$, so $f(a) \in A'$ and $f(a) \leq f(x)$ because f is an isotone map. Hence $f(x) \in \uparrow A'$. Since $\uparrow A' \subset B'$, $f(x) \in B'$, so that $x \in f^{-1}(B')$. Consequently, $\uparrow f^{-1}(A') \subset f^{-1}(B')$, which implies $f^{-1}(A') <_{\leq'} f^{-1}(B')$.

(\Leftarrow) Suppose $x \leq y$ in X. Since $\uparrow \{f(x)\} \subset \uparrow \{f(x)\}, \{f(x)\} <_{\leq'} \uparrow f(x)$; therefore $f^{-1}(f(x)) <_{\leq} f^{-1}(\uparrow f(x))$ because f is continuous,

then by definition of \leq_{\leq} we obtain $\uparrow f^{-1}(f(x)) \subset f^{-1}(\uparrow f(x))$. Since $x \in f^{-1}(f(x))$ and $x \leq y$, $y \in f^{-1}(\uparrow f(x))$. Thus $f(x) \leq f(y)$. This completes the proof.

Using the above theorem, one has the following:

COROLLARY 2.23. The functor $G: \underline{\sigma Latt} \longrightarrow \underline{\sigma TS}$ is a full embedding, where $\underline{\sigma Latt}$ is the category of σ -lattices and isotone maps.

References

- 1. J. Adamek and H. Herrich and G. E. Strecker, Abstract and concrete categories, John Wiley and Sons, 1990.
- 2. N. Bourbaki, General topology Part I, Addision-Wesley, 1966.
- 3. T. Bromek and M. Moszyńska, Various categorical approaches to statiscal spaces, Polska Akademia, Instytut Mathematyczny, Disser. Math., 1983.
- 4. D. C. J. Burgess and M. Fitzpatrick, Syntopogenous preordered spaces, Math. Proc. Comb. phil. Soc. 80 (1978), 19-24.
- S. H. Chung, Categories of syntopogenous spaces, Sogang Univer., Disser. Math., 1988.
- 6. D. L. Cohn, Measure theory, Birkhäuser, 1980.
- Á. Császár, Foundations of General topology, The Macmillan Co., New York, 1963.
- 8. A. W. Hager, Measurable uniform spaces, Fund. Math. 77 (1972), 51-73.
- 9. M. Herrlich and G. E. Strecker, Coreflective subcategories in general topology, Fund. Math. 73 (1972), 199-213.
- C. Y. Kim, S. S. Hong, Y. H. Hong, P. U. Park, Algebras in Cartesian closed topological categories, Lecture Notes Series in Seminars Math. 1, Yonsei Univ., Seoul, 1972.
- 11. G. Preuss, Theory of topological structures, D. Reidel Publishing Company, 1988.

Department of Mathematics Sungshin Women's University Seoul 136-742, Korea