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ON MEASURABLE SPACES AND
SEMI-TOPOGENOUS SPACES

Byung Sik IN

We are to present some properties of binary relations by means of
categorical method. The concept of semi-topogenous structures is due
to Csészar.

Using this, we give a new definition of a o-topogenous structure as a
particular type of semi-topogenous structure.

In this paper, we concern with the relationships between Mes (the
category of measurable spaces) and subcategories of ST (the category of
semi-topogeous spaces), and study some properties of these categories.

Further, it turn out that Mes, gT'S (the category of o-topologeous
spaces) resp. are coreflective subcategories of IST (the category of in-
terpolation semi-topogenous spaces), ST resp..

Also, we construct the category gISTG (the category of interpolation
symmetrical o-topogeous spaces with generating sets) as a coreflective
subcategory of IST, which is isomorphic to Mes.

Finally we obtain that the functor G : gLatt — ¢TSS is a full em-
bedding, where g Latt is the category of o-lattices and isotone maps.

1. Preliminaries

In this section we introduce categorical properties of the category Mes
of measurable spaces and measurable maps.

DEFINITION 1.1. Let X be a set. A collection A of subsets of X is
called a o-algebra on X if the following conditions are satisfied:
(i) X e A,
(i1) for each A € A, A° € A,
(iii) for each infinite sequence (4;) (¢ € I) of sets such that 4; € A,
A; € A (v € I), where I is any countable set of indices.

In this case (X, A) is called a measurable space.
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DEFINITION 1.2. Let (X,.A) and (Y,.A) be measurable spaces. A
map f : X — Y is said to be measurable if fY(A") € A for each
Aed.

NOTATION. The class of all measurable spaces and measurable maps
forms a category, which is denoted by Mes.

THEOREM 1.3. The category Mes is topological.

Proof. Let X be a set, (X4, Aa))aca a family of measurable spaces
and (fo : X — Xa)aen a source. Let A be the c-algebra generated
by {f7'(Aa)|Aa € As,a € A}. Then (X, A) is a measurable space
and fo : (X, A) — (Xa, Aq) is measurable for all @ € A. For any
measurable space (Y, B), let g : (Y,B) — (X, A) be a map such that
for all @ € A, foog : (Y,B) — (Xa, Aq) i1s measurable. For any
o € Aand Ay € Ao, (fa09) N (4a) = g7 (f3(As)) € B. Hence
g~ 1(A) C B, because A is generated by {f5'(Aa)|Aa € Aa, € A}; s0

g is measurable. This completes the proof.

COROLLARY 1.4. The category Mes is cotopological, complete and
cocomplete.

COROLLARY 1.5. The forgetful functor U : Mes — Set has a left
adjoint.

Proof. Since U : Mes — Set is topological, it has a left adjoint.

2. Semi-topogenous spaces

The following definitions are due to Csaszar [7].

DEFINITION 2.1. Let X be a set. Then a relation < on P(X) is called
a semi-topogenous structure on X if it satisfies the following conditions:
(1) ¢ <o, X <X;
(ii) A < B implies A C B,
(ili) Ac A" < B' C B implies A < B.
The ordered pair (X, <) is called a semi-topogenous space.
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DEFINITION 2.2. Let X be a set and F a family of subsets of X
with ¢, X € F. Then a semi-topogenous structure on X is said to be
generated by F (or F is the generating system of sets) if it satisfies the
following condition;

A < B iff thereis a set S € F such that A C S C B.

EXAMPLE 2.3. For any measurable space (X, .A), define <4 on P(X)
as follows:
A <4 B iff thereis S € A such that A C § C B. Then <4 is a

semi-topogenous structure on X.

DEFINITION 2.4. Let (X, <) and (Y, <’) be semi-topogenous spaces
and f: X — Y a map.
Then f is said to be continuous if for A' <' B!, f~1(A4") < f~Y(B").

ProPOSITION 2.5. 1) If (X, <) is any semi-topogenous space, then
the identity map 1x : (X, <) — (X, <) is continuous.

2) If f: (X,<) — (Y,<') continuous and g : (Y,<') — (Z,<)
continuous, then go f : (X, <) — (Z,<") is also continuous.

Proof. Tt follows immediately from the definition.

We can easily obtain the following category from Proposition 2.5.

NOTATION. The class of all semi-topogenous spaces and continuous
maps between them forms a category, which will be denoted by ST.

PROPOSITION 2.6. Let (X,A) and (Y,A') be measurable spaces. Then
f (X, A) — (Y, A") be measurable iff f : (X, < 4) — (Y, < 4 ) is con-
tinuous.

Proof. (=) Let A" < B'. Then there is §' € A’ such that A’ C
S'" C B'. Since f is measurable, f~1(§") € Aand f'(A") C f71(S") C
f7Y(B"). Thus f~1(A') <4 f~1(B') and hence f is continuous.

(<) Let A" € A'. Then A’ <4 A'.

Since f is continuous, f~'(A") <4 f7!(A’') and hence f~1(4") € A.
Thus f is measurable.

COROLLARY 2.7. The functor F : Mes — ST defined by F(X, A) =
(X,<4) and F(f) = f, is a full embedding.

Proof. It is immediate from Proposition 2.6.
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DEFINITION 2.8. Let (X, <) be a semi-topogenous space and define
a relation <®on P(X)by A < Biff X — B < X — A. Then <€ is called
the complement of <. If <=<°, then < is said to be symmetrical. In
this case (X, <) is called a symmetrical semi-topogenous space.

DEFINITION 2.9. A semi-topogenous structure < on X is called a
o-topogenous structure if for A; < Bi(x € I), ;s Ai < Uiy Bi and
Mier Ai < ier Bi, where I denotes any countable set of indices. In this
case, (X, <) is called a o-topogenous space.

REMARK 2.10. Let (X, A) be any measurable space. Then (X, <4)
is a symmetrical o-topogenous space.

Proof. For any (X, A) € Mes, we define a relation <4 on P(X) by
A <4 Biffthereis S € Asuchthat ACSCB. Then X-BCX-5C
X — A for some X — S € A, so that (X, <4) is symmetrical. In order to
show that (X, <.4) is a o-topogenous space, let 4; <4 B;(1 € I), where
I is any countable index set. Then there is S; € A(¢ € I) such that 4; C
Si C Bi(z € I), so we have | J;c; A C ;1 Si C Uiy Bi and (ier 4i C
ﬂzel S C ﬂzel Bi. Thus ;e; 4i <u Uies Bi and (i Ai <a (ies B
since J;cy Siy[ier Si € A

NOTATION. The full subcategory of ST determined by o-topogenous
spaces will be denoted by ¢T'S.

THEOREM 2.11. The category gT.§ is coreflective in ST.

Proof. Let (X, <) € ST and define a relation <” on P(X) as follows:

A «° B iff there are sequence (A;)ier and (Bj)jes such that A =
Uier 4is B = ey Bj and A; < Bj(i € I,j € J), where I and J are
countable sets of indices. Then we can easily get that <7 is a semu-
topogenous structure.

Let us prove that <7 is a ¢ -topogenous structure. Suppose Ay <7
By (k € K) for any countable index set K.

Then Ay = U1€I Ak,,Bk = ﬂ cJ Bk]' and Ap < Bk]'(k (S I\’,
vel ] € J), S0 Ukel& Ar = Ukek U,‘ej Aki) = UieI(UkEK Aki)s
Ukel\ By = UkeA(ﬂ;eJB’»J) ﬂ{]k}eJ"(UkeK Bi;, ) and UkeK Ak
< UkeI\" By;, . It follows that Ukeh" Ay <° UkeK By.

Similarly, we obtain that ﬂkeh Ap <° ﬂkek By. Thus < is a o-
topogenous structure, evidently finer than <, consequently (X,<7) €
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gT'S and the identity map 1x : (X, <?) — (X, <) is continuous. Take
any (Y,<') € gT'S and any continuous f : (¥,<’) — (X, <). Since
(Y,<') € ¢T8,(Y,<') = (Y,<), and so f : (V,<') — (X,<%) is
continuous. Moreover, such an f is unique because 1x is bijective. Thus
1x :(X,<%) — (X, <) is the gT'S-coreflection of (X, <).

DEFINITION 2.12. Let (X, <) be a semi-topogenous space. Then <
is called an interpolation semi-topogenous structure if for A < B, there

is a subset S of X such that A < § < B.

REMARK 2.13. For any (X, A) € Mes, <4 is an interpolation semi-
topogenous structure on X.

Proof. Suppose A <4 B . Since <4 is a semi-topogenous structure,
thereis S € Asuchthat ACSCB. Hence ACSCSand SCSCB
imply A <4 S and S <4 B. Thus the proposition is proved.

NOTATION. The full subcategory of ST determined by interpolation
semi-topogenous spaces (interpolation o-topogenous spaces, interpola-
tion symmetrical o-topogenous spaces, interpolation symmetrical o-
topogenous spaces with generating sets) will be denoted by IST(gIT,
alST, ¢cISTG).

THEOREM 2.14. The category glT is coreflective in IST.

Proof. Let (X, <) € IST and define a relation <” on P(X) as follows:
A <° B iff there are sequences (Ai)icr, (Bi)ier, (Aij)jeJ, (Bij)jes and
(C,'J‘)jej such that

A =Uerdi,B =UierB;,C = U;erC;,
Ai = NjesAij, Bi = NjesBij, Ci = N;eiCyj,
A,‘j < C,‘]’ < B,‘j(i €l,;el])

where I and J are countable sets of indices.

By the definition of <7, we can easily show that <7 is an interpolation
semi-topogenous structure.

Moreover, as in proof of Theorem 2.11, <7 is a o-topogenous struc-
ture. Hence (X,<7) € oIT and the identity map 1x : (X,<?) —
(X, <) is continuous.
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Take any (Y, <) € ¢IT and any continuous f : (¥, <') — (X, <).
Since(Y, <') € gIT, (Y,<') = (Y,<'?), so that f : (Y,<') — (X, <)
is continuous. Furthermore, such an f is unique.

Thus 1x : (X,<?) — (X, <) is the gIT-coreflection of (X, <).

COROLLARY 2.15. (1) The category oIST is coreflective in gIT.
(2) The category gISTG is coreflective in gIST.

THEOREM 2.16. The categories ¢ISTG and Mes are isomorphic.

Proof. For any (X,<) € gISTG, let Ac = {A C X | A < A}
Then it is clear that (X, A<) € Mes. If f : (X,<) — (Y,<) is
continuous ,then f : (X, A¢) — (Y, A.r) is measurable. Thus G :
agISTG — Mes is a functor defined by G(X, <) = (X, A<) and G(f) =
f. Conversely, for any (X, .A) € Mes, we define a relation <4 on P(X)
as follows: A <4 B iff there is S € A such that A ¢ § C B. By
Remark 2.11 and Theorem 2.14, we have (X, < 4) € gISTG. Suppose
g : (X,A) — (Y, A) is measurable, then ¢ : (X,<4) — (Y,< 4
) is continuous. Thus F : Mes — oISTG is a functor defined by
F(X,A) =(X,<4) and F(g) = ¢. Moreover, for any (X, <) € ¢ISTG,
F(G(X,<)) = F(X,A<) = (X,<4.). Since A <4 B iff there is
Se€ Acsuchthat ACSCcBifACSC Band S< Siff A< B,
(X,<u.) = (X,<). Hence Fo G = ly1s7c. For any (X, A) € Mes,
GF(X,A) = F(X,<4)=(X,Ac,) = (X, A), so that Go F = 1pes.
Therefore 0 ISTG and Mes are isomorphic.

THEOREM 2.17. The category Mes is coreflective in IST

Proof. It follows from Theorem 2.14, Corollary 2.15 and Theorem
2.16.

We have the following by the above theorem and Theorem 1.3.

THEOREM 2.18. The category g¢ISTG has the following :

(1) ¢ISTG is topological and cotopological.
(2) ¢ISTG is complete and cocomplete.
(3) The forgetful functor U : ¢ISTG — Set has a left adjoint.
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PROPOSITION 2.19. Let L be a lattice of subsets of a set X with
¢,X € L and let < be a semi-topogenous structure generated by L.
Then < is a o-topogenous structure iff L is closed under countable unions
and intersections.

Proof. (=) If < is a o-topogenous structure and S; € £(: € I) for any
countable index set I, then | J;c; Si < ;e Si and ;e Si < Nier Si-
Hence | J;¢; Si,Nicr Si € £.

(<) If A; < Bi(i € I), then there is S; € £(:i € I) such that 4; C
Si C Bi,(t € I). Hence Uiel A; < UieI B; and nz‘eIAi < ﬂieIBi’
because | J;c; Si, Nie; Si € L.

DEFINITION 2.20. Let X be a lattice. Then X is called a o-lattice if
every countable subset D of X has a join \/ D and a meet A D.

PROPOSITION 2.21. Let (X,<) be any o-lattice and let << be a
relation on P(X) defined by A << B iff 1 A C B. Then << is a o-
topogenous structure on X.

Proof. SinceT ¢ =dand T X =X, << pand X << X. If A << B,
then T A C B. Since A CT A,A C B. Suppose A' C A << B C B',
then T 4 C B. Since T A’ C1 A,1 A’ C B’, so we have 4' << B
Thus << is a semi-topogenous structure. We claim that << is a o-
topogenous structure. Suppose A; << B;(¢ € I) for any countable index
set I, then T A; C Bi(v € I), so that | J; (T Ai) C Uy Bi and ;¢ (T
Ai) C ﬂiel Biie, T (Uier 4i) C Uier Bi and 1 Mier 4i) C ﬂie] B;
because T (U;cr A1) = Uier(T Ai) and 1 (Nier Ai) C Nies(T Ai). Hence
Usier Ai << Uie; Bi and (Mier Ai << Nies Bi- This completes the proof.

THEOREM 2.22. Let (X, <) and (Y, <) be o-lattices. Then f:(X,<
) — (Y, <) is an isotone map iff f : (X, <<) — (Y, <) is a contin-
uous map. -

Proof. (=) Let A" <</ B' and z €1 f~!(A’). Then there is a €
f7Y(A") such that a < z, so f(a) € A" and f(a) < f(z) because f is
an isotone map. Hence f(z) €T A’. Since T A’ C B, f(z) € B, so
that z € f~!(B'). Consequently, T f~1(4") C f~Y(B'), which implies
FHAY) << FA(BY),

(<) Suppose = < y in X. Since T {f(2)} 1 {f(x)}, {f(x)} <o
f(z) ; therefore f~!(f(z)) << f (T f(z)) because f is continuous,
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then by definition of << we obtain T f~!(f(z)) C f~}(1 f(z)). Since
z € f7'(f(z)) and z <y, y € f71(1 f(2)). Thus f(z) < f(y). This

completes the proof.
Using the above theorem, one has the following:

COROLLARY 2.23. The functor G : gLatt — gT'S is a full embed-
ding, where g Latt is the category of o-lattices and isotone maps.
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