SHARP RESULTS FOR THE MULTIPLICITY OF PERIODIC SOLUTIONS OF A NONLINEAR SUSPENSION BRIDGE EQUATION

Q-HEUNG CHOI AND TACKSUN JUNG

0. Introduction

In this paper we study the multiplicity of periodic solutions of a nonlinear suspension bridge equation

$$(0.1) u_{tt} + u_{xxx} + bu^{+} = 1 + \varepsilon h(x,t) \quad \text{in} \quad \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \mathbb{R}$$

$$u\left(\pm \frac{\pi}{2}, t\right) = u_{xx}\left(\pm \frac{\pi}{2}, t\right) = 0$$

$$u(x,t) = u(-x,t) = u(x,-t) = u(x,t+\pi).$$

McKenna and Walter [8] has proved that if 3 < b < 15, (0.1) has at least two solutions. Choi and Jung [3] proved that if -1 < b < 3, then (0.1) has a unique solution and that if 3 < b < 15, then there exists at least three solutions of (0.1) by a variational reduction method, with replacing the condition for u(x,t) in (0.1) by

$$u(x,t) = u(-x,t) = u(x,t+\pi).$$

The purpose of this paper is to show that if 3 < b < 15, then (0.1) has exactly three solutions.

Received July 27, 1994.

AMS Classification: 34B15, 35Q40.

Key word: Eigenvalue, eigenvector, Leray-Sander degree.

Research supported in part by GARC-KOSEF and Inha University Research Foundation.

1. Preliminaries

We define the differential operator L as follows

$$Lu = u_{tt} + u_{xxxx}.$$

The eigenvalue problem for u(x,t)

$$Lu = \lambda u$$
 in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times R$, $u\left(\pm \frac{\pi}{2}, t\right) = 0$, $u(x, t) = u(-x, t) = u(x, -t) = u(x, t + \pi)$,

has infinitely many eigenvalues

$$\lambda_{mn} = (2n+1)^4 - 4m^2$$
 $(m, n = 0, 1, 2, \cdots)$

and corresponding normalized eigenfunctions ϕ_{mn} $(m, n \geq 0)$ given by

$$\phi_{0n} = \frac{\sqrt{2}}{\pi} \cos(2n+1)x \quad \text{for} \quad n \ge 0$$

$$\phi_{mn} = \frac{2}{\pi} \cos 2mt \cos(2n+1)x \quad \text{for} \quad m > 0, \ n \ge 0.$$

We note that all eigenvalues in the interval (-19,45) are given by

$$\lambda_{20} = -15 < \lambda_{10} = -3 < \lambda_{00} = 1 < \lambda_{41} = 17.$$

Let Q be the square $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and H the Hilbert space defined by

$$H = \{ u \in L^2(Q) \mid u \text{ is even in } x \text{ and } t \}.$$

Then kthe set $\{\phi_{mn} \mid m, n = 0, 1, 2, \dots\}$ is an orthonormal base in H. For simplicity of notation, a weak solution of (0.1) is characterized by

(1.1)
$$Lu + bu^{+} = 1 + \varepsilon h(x, t) \quad \text{in} \quad H.$$

Now we denote that for given u, $\chi(u)$ is the characteristic function of the positive set of u, i.e.,

$$[\chi(u)](x,t) = \begin{cases} 1, & \text{if } u(x,t) > 0 \\ 0, & \text{if } u(x,t) \le 0 \end{cases}.$$

Now we consider the operator $()^+$ from $L^p(Q)$ into $L^q(Q)$ which sends u into u^+ for given p, q > 1, q < p.

We note that if $u \in L^p$ is such that $\mu\{(x,t) \in Q : u(x,t) = 0\} = 0$ for the Lebesque measure μ , then, for given $\varepsilon > 0$, there exists a neighborhood U of u such that if we write

$$v^+ - \chi(u)v = z(u)$$

for $v \in U$, then the function z is a Lipschitz mapping from U into L^q with Lipschitz constant less than or equal to ε (ref. [11]).

We consider the eigenvalue problem

$$-Lu = \nu Au$$
 in H

for given $A \in L^{\frac{1}{2}}(Q)$. We note that if A > 0 in a set of positive measure, then

$$(1.2) \cdots < \nu_{41}(A) < \nu_{00}(A) < 0 < \nu_{10}(A) < \nu_{20}(A) < \cdots.$$

Let us set $A(u) = b\chi(u)$ when

$$\mu\{(x,t): u(x,t)=0\}=0.$$

2. Main result

We state the main result of this paper, which is a sharp result for the multiplicity of solutions of a nonlinear suspension bridge equation.

THEOREM 2.1. Let $h \in H$ with ||h|| = 1 and 3 < b < 15. Then there exists $\varepsilon_0 > 0$ such that if $|\varepsilon| < \varepsilon_0$, then the equation

(2.1)
$$Lu + bu^{+} = 1 + \varepsilon h(x, t) \quad \text{in} \quad H$$

has exactly three solutions.

For the proof of Theorem 2.1 we need some lemmas.

LEMMA 2.1. For -1 < b < 15, the problem

$$Lu + bu^+ = 0$$
 in H

has only the trivial solution $u \equiv 0$ (ref. [8]).

LEMMA 2.2. Let $h \in H$ with ||h|| = 1 and $\alpha > 0$ be given. Then there eixsts $R_0 > 0$ (depending only on h and α) such that for all b with $-1 + \alpha \le b \le 15 - \alpha$ and all $\varepsilon \in [-1,1]$ the solutions of (2.1) satisfy $||u|| < R_0$ (ref. [8]).

LEMMA 2.3. Under the assumptions and all the notations of Lemma 2.2

$$d_{LS}(u - L^{-1}(1 - bu^{+} + \varepsilon h), B_{R}, 0) = 1$$

for all $R \geq R_0$, where d_{LS} denotes the Leray-Schauder degree (ref. [8]).

LEMMA 2.4. For b > -1, the boundary value problem

(2.2)
$$y^{(4)} + by^{+} = 1$$
 in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \ y\left(\pm\frac{\pi}{2}\right) = y''\left(\pm\frac{\pi}{2}\right) = 0$

has a unique solution y which is even and positive and satisfies

$$y'\left(-\frac{\pi}{2}\right) > 0$$
 and $y'\left(\frac{\pi}{2}\right) < 0$

(ref. [8]).

LEMMA 2.5. Let -1 < b with b not an eigenvalue of L. Let $h \in H$ with ||h|| = 1 be given. Then there exist $\varepsilon_0 > 0$ (depending on b and h) such that if $|\varepsilon| < \varepsilon_0$, the boundary value problem

$$Lu + bu^+ = 1 + \varepsilon h(x, t)$$
 in H

has a positive solution u_0 .

Proof. From Lemma 2.4, the boundary value problem

$$y^{(4)} + by^{+} = 1$$
 in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$y\left(\pm\frac{\pi}{2}\right) = y''\left(\pm\frac{\pi}{2}\right) = 0$$

has a unique positive solution y.

We note that if b is not an eigenvalue of L, then the following linear partial defferential equation

$$Lu + bu = \varepsilon h(x,t)$$
 in H

has a unique solution u_{ε} . We can choose sufficiently small $\varepsilon_0 > 0$ (depending on b and h) such that if $|\varepsilon| < \varepsilon_0$ then $u_{\varepsilon} + y(\text{say } u_0) > 0$ which is a solution of (2.1). So the lemma is proved. \square

LEMMA 2.6. Assume that 3 < b < 15. Let $h \in H$ with ||h|| = 1 be given. Then there exists a small neighborhood U of u_0 and $\varepsilon_2 > 0$ such that if $|\varepsilon| < \varepsilon_2$, then

$$d_{LS}(u - L^{-1}(1 + bu^{+} + \varepsilon h), U(u_{0}), 0) = -1,$$

where u_0 is a positive solution of (2.1).

Proof. From the Lemma 6 in [8], we have that: If y is the unique positive solution of the boundary value problem in Lemma 2.4, then there eixst $\gamma > 0$, $\varepsilon_1 > 0$ such that

$$d_{LS}(u - L^{-1}(1 + bu^{+} + \varepsilon h), B_{\gamma}(y), 0) = -1$$

for $|\varepsilon| < \varepsilon_1$.

Choose $0 < \varepsilon_2 < \min\{\varepsilon_0, \varepsilon_1\}$ such that if $|\varepsilon| < \varepsilon_2$, then

$$u_{\varepsilon} + y \in B_{\gamma}(y)$$

for ε_0 in Lemma 2.5.

Then for $|\varepsilon| < \varepsilon_2$, $B_{\gamma}(y)$ is the small neighborhood of $u_0 = u_{\varepsilon} + y$ such that $\partial B_{\gamma}(y)$ has no solution of the equation

$$u - L^{-1}(1 + bu^{+} + \varepsilon h) = 0.$$

Let us take $U(u_0) = B_{\gamma}(y)$. Then we obtain the desired result.

Now, we turn attention to the solutions of (2.1) which change sign.

LEMMA 2.7. Assume that 3 < b < 15. Then if u is a solution of (2.1) which changes sign, then

$$(2.3) \nu_{10}(A(u)) > 1.$$

Proof. We know that (2.1) has the positive solution u_0 . Writing (2.1) for u and u_0 and subtracting we get

$$(2.4) -L(u_0 - u) = b(u_0 - u^+).$$

If we use the notation $\hat{A} = \frac{b(u_0 - u^+)}{u_0 - u}$, then we have

$$(2.5) 0 \le A(u) \le \hat{A} \le b.$$

By (2.4), $\nu_{mn}(\hat{A}) = 1$ for some $m, n \ge 0$ and by (2.5), $\nu_{10}(\hat{A}) = 1$. Since

$$\nu_{10}(A(u)) > \nu_{10}(\hat{A}) = 1,$$

the desired result follows. \square

LEMMA 2.8. Assume that 3 < b < 15. Then if u_* is a solution of (2.1) which changes sign, then there exists $\varepsilon_* > 0$ such that

$$d_{LS}(u - L^{-1}(1 - bu^{+} + \varepsilon h), B_{\varepsilon_{\bullet}}(u_{*}), 0) = 1.$$

Proof. Let u_* be a solution of (2.1) which changes sign. Since the solutions of (2.1) are discrete, we can choose small $\varepsilon' > 0$ such that $B_{\varepsilon'}(u_*)$ does not contain the other solutions of (2.1). Let us choose $u \in B_{\varepsilon'}(u_*)$ and set $v = u - u_*$. Then there eixsts $\varepsilon_* < \varepsilon'$ such that the following holds:

$$u - L^{-1}(1 - bu^{+} + \varepsilon h) = (u_{*} + v) - L^{-1}(1 - b(u_{*} + v)^{+} + \varepsilon h)$$

$$= v - L^{-1}(bu_{*}^{+} - b(u_{*} + v)^{+}) = v - L^{-1}(-b\chi(u_{*})v)$$

$$= v - L^{-1}(-A(u_{*})v).$$

Thus we have

$$d_{LS}(u - L^{-1}(1 - bu^{+} + \varepsilon h), B_{\varepsilon^{*}}(u_{*}), 0)$$

= $d_{LS}(v + L^{-1}(A(u_{*})v), B_{\varepsilon^{*}}(0), 0).$

The eigenvalues of the operator $v + L^{-1}A(u_*)v$ are connected with the eigenvalues ν of -L by

$$v + L^{-1}A(u_*)v = \rho v \iff -Lv - A(u_*)v = \rho(-Lv)$$

or $\rho = \frac{\nu - 1}{\nu}$. It follows from Lemma 2.7 and (1.2) that there are only positive eigenvalues. Thus the desired degree is +1. So the lemma is proved. \square

Proof of Theorem 2.1. The equation (2.1) can be written in the form

$$u - L^{-1}(1 - bu^{+} + \varepsilon h) = 0.$$

The degree of $u - L^{-1}(1 - bu^+ + \varepsilon h)$ on a large ball of radius $R > R_0$ is +1 by Lemma 2.3. From Lemma 2.6, the constant sign solution of (2.1) is only the positive solution u_0 and the degree on the small neighborhood $U(u_0)$ is -1. From Lemma 2.8, the degree on the ball $B_{\varepsilon^*}(u_*)$ is +1, if u_* is a solution of (2.1) which changes sign. Choosing $R > R_0$ so that B_R contains all solutions of (2.1), we can conclude that

$$d_{LS}(u - L^{-1}(1 - bu^{+} + \varepsilon h), B_{R} - (U(u_{0})), 0) = 2.$$

Since the solutions of (2.1) are discrete and the degree on the ball $B_{\epsilon^*}(u_*)$ is +1 if u_* is a change sign solution of (2.1), there exists exactly two change sign solutions in $B_R \setminus U(u_0)$. Thus there exist exactly three solutions in B_R . \square

References

- 1. A. R. Aftabizadeh, Existence and uniqueness theorems for fourth order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415-426.
- 2. Q. H. Choi and T. Jung, On periodic solutions of the nonlinear suspension bridge equation, Diff. Int. Eq. 4 (1991), 383-396.

- 3. Q. H. Choi, T. Jung, and P. J. McKenna, The study of a nonlinear suspension bridge equation by a variational reduction method, Applicable Analysis 50 (1993), 73-92.
- 4. J. M. Coron, Periodic solutions of a nonlinear wave equation without assumptions of monotonicity, Math. Ann. 262 (1983), 273-285.
- 5. A. C. Lazer and P. J. McKenna, A symmetry theorem and applications to non-linear partial differential equations, J. Diff., Eq. 71 (1988), 95-106.
- P. J. McKenna, R. Redinger, and W. Walter, Multiplicity results for asymptotically homogenuous semilinear boundary value problems, Annali de Matematica pur. appl. (4) CXL3 (1986), 347-257.
- 7. P. J. McKenna and W. Walter, On the multiplicity of the solution set of some nonlinear boundary value problem, Nonlinear analysis 8 (1984), 893-907.
- 8. P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Archive for Rational Mechanics and Analysis 98 (1987), 167-177.
- 9. L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Inst. Lecture Notes, 1974.
- 10. J. Schröder, Operator Inequalities, Academic Press, 1980.
- 11. S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. Henri Poincaré 2 (1985), 143-156.

Department of Mathematics Inha University Incheon 402-751, Korea

Department of Mathematics Kunsan National University Kunsan 573-360, Korea