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SHARP RESULTS FOR THE MULTIPLICITY OF
PERIODIC SOLUTIONS OF A NONLINEAR
SUSPENSION BRIDGE EQUATION

Q-HEUNG CHOI AND TACKSUN JUNG

0. Introduction

In this paper we study the multiplicity of periodic solutions of a non-
linear suspension bridge eqaution

Ut + Ugrze + bU+ =1+ E,'h(.’lZ,t) n (—5 ") x R

(0.1) u (:tg,t) = Ues (:tg,t) y
u(z,t) = u(—z,t) = u(z, —t) = u(z,t + m).

McKenna and Walter [8] has proved that if 3 < b < 15, (0.1) has at
least two solutions. Choi and Jung [3] proved that if —1 < b < 3, then
(0.1) has a unique solution and that if 3 < b < 15, then there exists
at least three solutions of (0.1) by a variational reduction method, with
replacing the condition for u(z,?) in (0.1) by

u(x,t) = u(—z,t) = u(z,t + 7).

'The purpose of this paper is to show that if 3 < b < 15, then (0.1)
has exactly three solutions.
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1. Preliminaries

We define the differential operator L as follows
Lu = Ut + Urzzrz-
The eigenvalue problem for u(z,t)

T

Lu = Au in (—5,5

u (ig,t) —0,
u(z,t) = u(—z,t) = u(z, —t) = u(z,t + 7),

)xR,

has infinitely many eigenvalues
Amn = (2n + 1) —am? (m,n=0,1,2,--+)

and corresponding normalized eigenfunctions ¢,,, (m,n => 0) given by

2
Pon = —\7/‘; cos(2n+ 1)z for n>0

2
Smn = —cos2mtcos(2n+ 1)z for m >0, n > 0.
7r

We note that all eigenvalues in the interval (—19,45) are given by
/\20=—-15<)\]0:—3</\00:1</\41 = 17.

T T )
Let @ be the square (—§,§> X (—5,5) and H the Hilbert space
defined by

H = {u€ L*Q) | uiseven in z and t}.

Then kthe set {¢mn | m,n = 0,1,2,---} is an orthonormal base in H.
For simplicity of notation, a weak solution of (0.1) is characterized by

(1.1) Lu+but =1+¢eh(z,t) in H.
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Now we denote that for given u, x(u) is the characteristic function of
the positive set of u, i.e.,

N

Now we consider the operator ( )* from LP(Q) into L9(Q) which sends
u into ut for given p,q¢ > 1, ¢ < p.

We note that if u € LP is such that p{(z,t) € Q : u(z,t) = 0} =
0 for the Lebesque measure p, then, for given ¢ > 0, there exists a
neighborhood U of u such that if we write

vt — x(u)v = z(u)

for v € U, then the function z is a Lipschitz mapping from U into L?
with Lipschitz constant less than or equal to ¢ (ref. [11]).
We consider the eigenvalue problem

—Lu=vAuy in H

for given A € L%(Q). We note that if A > 0in a set of positive measure,
then

(12) s 1/41(_4) < l/()o(A) <0< Vlo(A) < I/QQ(A) <L v
Let us set A(u) = bx(u) when
p{(z,t) : u(z,t) =0} =0.

2. Main result

We state the main result of this paper, which is a sharp result for the
multiplicity of solutions of a nonlinear suspension bridge equation.

THEOREM 2.1. Let h € H with ||h|| =1 and 3 < b < 15. Then there
exists €9 > 0 such that if |¢| < eo, then the equation

(2.1) Lu+but =14¢h(z,t) in H
has exactly three solutions.

For the proof of Theorem 2.1 we need some lemmas.
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LEMMA 2.1. For —1 < b < 15, the problem
Lu4+but=0 in H

has only the trivial solution u = 0 (ref. (8]).

LEMMA 2.2. Let h € H with ||h]| = 1 and o > 0 be given. Then
there eixsts Ry > 0 (depending only on h and «) such that for all b with
—1+a <b< 15— a and all ¢ € [—1,1] the solutions of (2.1) satisfy

l[ull < Ro (ref. [8]).

LEMMA 2.3. Under the assumptions and all the notations of Lemma
2.2
dis(u — L7'(1 = but +¢h), Br,0) =1

for all R > Ry, where dp s denotes the Leray-Schauder degree (ref. [8]).
LEMMA 2.4. For b > —1, the boundary value problem

@ w1 (55).(sF) = () =0

has a unique solution y which is even and positive and satisfies

1(-5) 20w v (3) <o
(ref. [8]).

LEMMA 2.5. Let —1 < b with b not an eigenvalue of L. Let h € H
with |h|| = 1 be given. Then there exist o > 0 (depending on b and h)
such that if |¢| < €o, the boundary value problem

Lu+but =1+¢h(x,t) in H

has a positive solution ug.

Proof. From Lemma 2.4, the boundary value problem

(4) + 4 _Z"_Z>
SO ht =1 (53,
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V(£5) v () o

has a unique positive solution y.
We note that if b is not an eigenvalue of L, then the following linear
partial defferential equation

Lu+bu =¢h(z,t) in H

has a unique solution u.. We can choose sufficiently small ¢ > 0 (de-
pending on b and k) such that if |¢| < o then u. + y(say uo) > 0 which
is a solution of (2.1). So the lemma is proved. O

LEMMA 2.6. Assume that 3 < b < 15. Let h € H with ||h|| = 1 be
given. Then there exists a small neighborhood U of up and £2 > 0 such
that if |€| < €2, then

drs(u— L1 + bu™ + h), U(ug),0) = —1,

where ug is a positive solution of (2.1).

Proof. From the Lemma 6 in [8], we have that : If y is the unique
positive solution of the boundary value problem in Lemma 2.4, then
there eixst ¥ > 0, €1 > 0 such that

dLS(U - L_l(l + but + eh),B,y(y),O) =-1

for le| < €3.
Choose 0 < €2 < min{eg, &1} such that if |¢] < &2, then

us+y € B‘y(y)

for €¢ in Lemma 2.5.
Then for |¢| < €2, By(y) is the small neighborhood of ug = u. + y
such that 8B, (y) has no solution of the equation

u— L7 (14 but +¢h)=0.

Let us take U(uo) = B,(y). Then we obtain the desired result. [

Now, we turn attention to the solutions of (2.1) which change sign.



120 Q-Heung Choi and Tacksun Jung

LEMMA 2.7. Assume that 3 < b < 15. Then if u is a solution of (2.1)
which changes sign, then

(2.3) vio(A(u)) > 1.

Proof. We know that (2.1) has the positive solution ug. Writing (2.1)
for u and up and subtracting we get

(2.4) —L(up —u) = blug —u™).
R _ T
If we use the notation 4 = M, then we have
up — u
(2.5) 0< A(u) < A<b.

By (2.4), Vmn(A) = 1 for some m,n > 0 and by (2.5), 110(A) = 1.
Since
V]D(A(u)) > lllo(A) = 1,

the desired result follows. [

LEMMA 2.8. Assume that 3 < b < 15. Then if u, is a solution of
(2.1) which changes sign, then there exists ¢, > 0 such that

drs(u—L7Y1 = but 4+ ¢h), B, (u.),0) = 1.

Proof. Let u, be a solution of (2.1) which changes sign. Since the
solutions of (2.1) are discrete, we can choose small ¢’ > 0 such that
Be:(u,) does not contain the other solutions of (2.1). Let us choose
u € Be(uy) and set v = u — u,. Then there eixsts ¢, < ¢’ such that the
following holds :

u— L1 —but +eh) = (ux +v) = L7 = b(us +0)" +ch)

=v— L7 (bu}l — b(us +v)") = v — L7 (=bx(u.)v)
=v— L7 (—A(u,)v).
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Thus we have

dps(u — L7Y1 - but + eh), Bes(u,),0)
= dLs(’U + L"I(A(u,,)v), B.. (0), 0)

The eigenvalues of the operator v + L~! A(u, )v are connected with the
eigenvalues v of —L by

v+ L7 A(u, v = pv <= —Lv — A(u,)v = p(—Lv)

or p= Y . It follows from Lemma 2.7 and (1.2) that there are only
positive eigenvalues. Thus the desired degree is +1. So the lemma is

proved. [
Proof of Theorem 2.1. The equation (2.1) can be written in the form

u—L7N1 - but +eh)=0.

The degree of u — L™(1 — bu™ + ¢h) on a large ball of radius R > R, is
+1 by Lemma 2.3. From Lemma 2.6, the constant sign solution of (2.1)
is only the positive solution ug and the degree on the small neighborhood
U(uo) is —1. From Lemma 2.8, the degree on the ball Bee(u,) is +1, if
uy is a solution of (2.1) which changes sign. Choosing R > R, so that
Bp contains all solutions of (2.1), we can conclude that

drs(u — L1 — bu™ + ¢h), Br — (U(ug)),0) = 2.

Since the solutions of (2.1) are discrete and the degree on the ball B.. (ux)
18 +1 if u,is a change sign solution of (2.1), there exists exactly two
change sign solutions in Br\U(uo). Thus there exist exactly three solu-
tions in Bp. 0O
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