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BLOCK TENSOR PRODUCT

SAa GE LEE

1. Introduction
For a Hilbert space H, let £(*) denote the algebra of all bounded
operators on H. For an n € N, it is well known that any element T €

n
L(@®H) is expressed as an n x n matrix each of whose entries lies in £(H)
so that T is written as

(1) T =(Ty), j=1,2,...,n, T € L(H),
where 597-{ is the direct sum Hilbert space of n copies of H.

Let S = (S;5) € E(és'H) be another such element, then the block Schur

product TS)S is defined as an element of E(é;'H) whose 1-j entry is T}, S;;
(1<4,5 <n).

More generally, let p € N and 70, 7®  T®) pe p elements of
L(®H) such that each TP (1 < ¢ < p) has the operator matrix expres-
sion

(2) T — (Tf;)) (i, =1,2,...,n, T\ € L(H)),

14

then the block Schur product THW@TPE)---©T® is the element of
C(éLB'H) defined by
(3) TOETAE)...@T® = (n(jl)Ti(]?j ... Ti(]’.’)) _
Thus,
(4) T(l)@T(Z)@. . .@T(p)

=(--- ((T(1)®T(2))@T(3)) ... )@T(P)

=the product by any other ways of taking parentheses.

The main purpose of this note is to prove the following.
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THEOREM 1. If Ti(]g)T,E;) = T,E;)Ti(jq) for all g,r := 1,2,...,p and all
t,7,k,l = 1,2,....n, and if all T(Q)(l < ¢ < p) are positive operators
then the block Schur product TM@TP®E)---@T®) is also a positive

operator.

2. Block tensor product

Keeping the notation in the introduction, we first note that Té}’}'{ is
identified with the Hilbert space tensor product H ® ¢*(n) ® £2(n) where
¢%(n) is the n-dimensional Hilbert space C" in the following way.

Let {e; : ¢ = 1,2,...,n} be the standard basis of ¢2(n). Give the
lexicographic order to the set {¢; ® ¢ : 1,7 = 1,2,...,n} with respect

2
n
to i’s and j’s. A vector of &H whose components are all zero except

the t-th component, say ((1 < t < n?), corresponds to (; ® &; ® ¢,
where ¢; ® €; is located at the t-th position in the lexicographic order of
{e; ®ejrt,7=1,2,...,n}.

Then the block tensor product T & S of T and S as an element of

L(&H) = LIH @ 0*(n) @ £2(n)) is defined by
(5) TOS= 2: (T:;Ske) ® €ij @ €xe,

1<i,j,k,<n

where e;; € L(¢%(n)), whose matrix with respect to the standard basis
{ei:1=1,2,...,n} is the n x n matrix of which entries are all zero, but
1 at i-) position.

It is important to note that

(6) thee; ® €; — €k @ e block iInT & SiSTiijg(i,j,k,f =12,...,n).

This enables us to verify the following lemma, whose routine compu-
tational proof will be omitted.

LEMMA 1. Let S,T,U and V be bounded operators on éI}'H
(i) If T,'_,'Skz = SkgT,'j for all t,7,k,€=1,2,... . n, then

(7) (TOS) =T*0S*
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(i) If Si;Uxe = UreSij, for all i,5,k,£ = 1,2,...,n, then

(8) (TOSHUGV)=(TU)®(SV)

For n > 2, we define two mappings =, p from C(éIB'H) into E(%}'H) by

(9) oT)=ToI, TecLl(®H)

(10) p(S)=108, SeL(dH)

n
where I is the identity operator on @M. The following lemma is imme-
diately proven from the previous lemma, so its proof is also omitted.

LEMMA 2. The above defined 7, p are *-representations ofﬁ(él)’H) on

2

n n

@H, sending the identity operator on @H to the identity operator on
2

n

OH.

CoRroLLARY 1. If T, S € C(é?‘() are positive operators, and if T;;Ske
= SieT;j foralli,j, k,€ = 1,2,...,n, then the block tensor product T® S

2
n
is also a positive operator acting an ®H.

Proof. When n = 1, the assertion is well-known to be true. So, let
n > 2. Applying Lemma 1, we get that

(T)p(S)=(ToNIES)=T06S
={oS(ToI)
= p(S)p(T).

By Lemma 2, n(T'), p(S) are also positive operators.
Consequently, T ® S = n(T)p(S) is a positive operator.
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COROLLARY 2. IfU,V € ,C(éIB'H are unitary operators, then U ©V is
2

also a unitary operator acting on aBH. (U,V may not commute.).

Proof. By Lemma 1,

UoV=UohIoV)
=m(U)p(V),

which is a unitary operator by Lemma 2.

2

Proof of Theorem 1. Let Y be the bounded linear operator from 161}97-[

n
into @H whose operator matrix with respect to the orthonormal bases

2
of %B'H into E'IIB'H as described previously is given as follows. Let I be
the identity operator on H. The matrix of Y is the n x n? matrix with
entries are filled with I’s located at (1,1), (2,n+2), (3,2r43),..., (n,n?)
positions and the zero operator 0 € L{H) at the remaining positions. For
example, when n = 3, the matrix of Y is 3 x 3 block operator matrix
as follows.

I 000 0 O0OTU OO
Y=10 0 0 0 I 0 0 0 O
000 0O0O0O0TO0OTI

It is routine to verify that, for T, S € £(é§'H),
(11) TOS =Y(T & S)Y™.

n
Consequently, if T and S are positive operators cn @H, then T®)S is
also a positive operator because T © S is a positive operator acting on

ZBH by Corollary 1. This proves the theorem when p = 2. For the case
p 2 3, the assertion follows from (4) and the mathematical induction.

REMARKS. To prove Theorem 1.6 ([2, p.7]), an extended version of
the Stinespring dilation theorem, Lemma 1.5 ([2, p.6]) has been em-
ployed. In my opinion, our Theorem 1 will be the right one to give a
complete background for the proof of Theorem 1.6 {[2, p.7]). Of course
our proof of Theorem 1 is motivated by that for the case of complex
matrices given in [1, p.29-30].
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LEMMA 3. Forany T,S € E(é’H), we have

1T S|l = TSI

Proof. Use Lemma 1 and Lemima 2.

COROLLARY 3. Let A,B be two C*-algebras and a : A — L(H),
8 : B — L(H) be completely bounded maps. Then the map

(z,y) € Ax B — o(z)B(y) € L(H)

is a completely bounded bilinear mapping.

Proof. Apply Lemma 3 and (12), noticing that ||Y|| < 1.

References

1. V. L. Paulsen, Completely bounded maps and dilations, Longman Scientific &
Technical, 1986.

2. S. Wassermann, Ezact C*-algebras and related topics, Lecture Notes Series No.19,
Research Institute of Mathematics & Global Analysis Research Center, Seoul
National University, Seoul, Korea, 1994.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea



