BLOCK TENSOR PRODUCT

SA GE LEE

1. Introduction

For a Hilbert space \mathcal{H} , let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded operators on \mathcal{H} . For an $n \in \mathbb{N}$, it is well known that any element $T \in \mathcal{L}(\oplus \mathcal{H})$ is expressed as an $n \times n$ matrix each of whose entries lies in $\mathcal{L}(\mathcal{H})$ so that T is written as

(1)
$$T = (T_{ij}), \quad i, j = 1, 2, \dots, n, \quad T_{ij} \in \mathcal{L}(\mathcal{H}),$$

where $\overset{n}{\oplus} \mathcal{H}$ is the direct sum Hilbert space of n copies of \mathcal{H} .

Let $S = (S_{ij}) \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$ be another such element, then the *block Schur* product T(S)S is defined as an element of $\mathcal{L}(\overset{n}{\oplus}\mathcal{H})$ whose i-j entry is $T_{ij}S_{ij}$ $(1 \leq i, j \leq n)$.

More generally, let $p \in \mathbb{N}$ and $T^{(1)}, T^{(2)}, \ldots, T^{(p)}$ be p elements of $\mathcal{L}(\oplus \mathcal{H})$ such that each $T^{(q)}(1 \leq q \leq p)$ has the operator matrix expression

(2)
$$T^{(q)} = \left(T_{ij}^{(q)}\right)(i, j = 1, 2, \dots, n, T_{ij}^{(q)} \in \mathcal{L}(H)),$$

then the block Schur product $T^{(1)} \otimes T^{(2)} \otimes \cdots \otimes T^{(p)}$ is the element of $\mathcal{L}(\overset{n}{\oplus}\mathcal{H})$ defined by

(3)
$$T^{(1)} \widehat{\otimes} T^{(2)} \widehat{\otimes} \cdots \widehat{\otimes} T^{(p)} = \left(T_{ij}^{(1)} T_{ij}^{(2)} \cdots T_{ij}^{(p)} \right).$$

Thus,

(4)
$$T^{(1)} \widehat{\otimes} T^{(2)} \widehat{\otimes} \cdots \widehat{\otimes} T^{(p)}$$

= $(\cdots ((T^{(1)} \widehat{\otimes} T^{(2)}) \widehat{\otimes} T^{(3)}) \cdots) \widehat{\otimes} T^{(p)}$

=the product by any other ways of taking parentheses.

The main purpose of this note is to prove the following.

Received July 9, 1994.

Supported by GARC-KOSEF, 1993-94 and MOE, Korea, 1994.

110 Sa Ge Lee

THEOREM 1. If $T_{ij}^{(q)}T_{k\ell}^{(r)}=T_{k\ell}^{(r)}T_{ij}^{(q)}$ for all $q,r=1,2,\ldots,p$ and all $i,j,k,l=1,2,\ldots,n$, and if all $T^{(q)}(1\leq q\leq p)$ are positive operators then the block Schur product $T^{(1)}(T^{(2)}) \cap T^{(p)}$ is also a positive operator.

2. Block tensor product

Keeping the notation in the introduction, we first note that $\overset{n^2}{\oplus}\mathcal{H}$ is identified with the Hilbert space tensor product $\mathcal{H}\otimes\ell^2(n)\otimes\ell^2(n)$ where $\ell^2(n)$ is the n-dimensional Hilbert space \mathbb{C}^n in the following way.

Let $\{\varepsilon_i : i = 1, 2, ..., n\}$ be the standard basis of $\ell^2(n)$. Give the lexicographic order to the set $\{\varepsilon_i \otimes \varepsilon_j : i, j = 1, 2, ..., n\}$ with respect

to i's and j's. A vector of ${}^{\iota}\mathcal{H}$ whose components are all zero except the t-th component, say $\zeta_t(1 \leq t \leq n^2)$, corresponds to $\zeta_t \otimes \varepsilon_i \otimes \varepsilon_j$, where $\varepsilon_i \otimes \varepsilon_j$ is located at the t-th position in the lexicographic order of $\{\varepsilon_i \otimes \varepsilon_j : i, j = 1, 2, \ldots, n\}$.

Then the block tensor product $T \odot S$ of T and S as an element of $\mathcal{L}(\oplus \mathcal{H}) = \mathcal{L}(\mathcal{H} \otimes \ell^2(n) \otimes \ell^2(n))$ is defined by

(5)
$$T \odot S = \sum_{1 \leq i,j,k,\ell \leq n} (T_{ij} S_{k\ell}) \otimes e_{ij} \otimes \epsilon_{k\ell},$$

where $e_{ij} \in \mathcal{L}(\ell^2(n))$, whose matrix with respect to the standard basis $\{\varepsilon_i : i = 1, 2, ..., n\}$ is the $n \times n$ matrix of which entries are all zero, but 1 at i-j position.

It is important to note that

(6) the
$$\varepsilon_i \otimes \varepsilon_j - \varepsilon_k \otimes \varepsilon_\ell$$
 block in $T \odot S$ is $T_{ik}S_{j\ell}(i,j,k,\ell=1,2,\ldots,n)$.

This enables us to verify the following lemma, whose routine computational proof will be omitted.

LEMMA 1. Let S, T, U and V be bounded operators on $\overset{n}{\oplus} \mathcal{H}$.

(i) If
$$T_{ij}S_{k\ell} = S_{k\ell}T_{ij}$$
 for all $i, j, k, \ell = 1, 2, \ldots, n$, then

$$(7) (T \odot S)^* = T^* \odot S^*$$

(ii) If $S_{ij}U_{k\ell} = U_{k\ell}S_{ij}$, for all $i, j, k, \ell = 1, 2, \ldots, n$, then

(8)
$$(T \odot S)(U \odot V) = (TU) \odot (SV)$$

For $n \geq 2$, we define two mappings π, ρ from $\mathcal{L}(\overset{n}{\oplus} \mathcal{H})$ into $\mathcal{L}(\overset{n^2}{\oplus} \mathcal{H})$ by

(9)
$$\pi(T) = T \odot I, \quad T \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$$

(10)
$$\rho(S) = I \odot S, \quad S \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$$

where I is the identity operator on $\overset{n}{\oplus}\mathcal{H}$. The following lemma is immediately proven from the previous lemma, so its proof is also omitted.

LEMMA 2. The above defined π , ρ are *-representations of $\mathcal{L}(\overset{n}{\oplus}\mathcal{H})$ on $\overset{n^2}{\oplus}\mathcal{H}$, sending the identity operator on $\overset{n}{\oplus}\mathcal{H}$ to the identity operator on $\overset{n^2}{\oplus}\mathcal{H}$.

COROLLARY 1. If $T, S \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$ are positive operators, and if $T_{ij}S_{k\ell}$ = $S_{k\ell}T_{ij}$ for all $i, j, k, \ell = 1, 2, ..., n$, then the block tensor product $T \odot S$ is also a positive operator acting an $\overset{n^2}{\oplus}\mathcal{H}$.

Proof. When n = 1, the assertion is well-known to be true. So, let $n \geq 2$. Applying Lemma 1, we get that

$$\pi(T)\rho(S) = (T \odot I)(I \odot S) = T \odot S$$
$$= (I \odot S)(T \odot I)$$
$$= \rho(S)\rho(T).$$

By Lemma 2, $\pi(T)$, $\rho(S)$ are also positive operators. Consequently, $T \odot S = \pi(T)\rho(S)$ is a positive operator. 112 Sa Ge Lee

COROLLARY 2. If $U, V \in \mathcal{L}(\overset{n}{\oplus} \mathcal{H})$ are unitary operators, then $U \odot V$ is also a unitary operator acting on $\overset{n^2}{\oplus} \mathcal{H}$. (U, V may not commute.).

Proof. By Lemma 1,

$$U \odot V = (U \odot I)(I \odot V)$$
$$= \pi(U)\rho(V),$$

which is a unitary operator by Lemma 2.

Proof of Theorem 1. Let Y be the bounded linear operator from $\bigoplus_{n=1}^{n} \mathcal{H}$ into $\bigoplus_{n=1}^{n} \mathcal{H}$ whose operator matrix with respect to the orthonormal bases of $\bigoplus_{n=1}^{n} \mathcal{H}$ into $\bigoplus_{n=1}^{n} \mathcal{H}$ as described previously is given as follows. Let I be the identity operator on \mathcal{H} . The matrix of Y is the $n \times n^2$ matrix with entries are filled with I's located at $(1,1), (2,n+2), (3,2n+3), \ldots, (n,n^2)$ positions and the zero operator $0 \in \mathcal{L}(\mathcal{H})$ at the remaining positions. For example, when n=3, the matrix of Y is 3×3^2 block operator matrix as follows.

It is routine to verify that, for $T, S \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$,

(11)
$$T (S)S = Y(T \odot S)Y^*.$$

Consequently, if T and S are positive operators on $\bigoplus \mathcal{H}$, then $T \subseteq S$ is also a positive operator because $T \subseteq S$ is a positive operator acting on $\bigoplus \mathcal{H}$ by Corollary 1. This proves the theorem when p=2. For the case $p \geq 3$, the assertion follows from (4) and the mathematical induction.

REMARKS. To prove Theorem 1.6 ([2, p.7]), an extended version of the Stinespring dilation theorem, Lemma 1.5 ([2, p.6]) has been employed. In my opinion, our Theorem 1 will be the right one to give a complete background for the proof of Theorem 1.6 ([2, p.7]). Of course our proof of Theorem 1 is motivated by that for the case of complex matrices given in [1, p.29-30].

LEMMA 3. For any $T, S \in \mathcal{L}(\overset{n}{\oplus}\mathcal{H})$, we have

$$||T \odot S|| \leq ||T|| ||S||.$$

Proof. Use Lemma 1 and Lemma 2.

COROLLARY 3. Let \mathcal{A}, \mathcal{B} be two C*-algebras and $\alpha : \mathcal{A} \to \mathcal{L}(\mathcal{H})$, $\beta : \mathcal{B} \to \mathcal{L}(\mathcal{H})$ be completely bounded maps. Then the map

$$(x,y) \in \mathcal{A} \times \mathcal{B} \longrightarrow \alpha(x)\beta(y) \in \mathcal{L}(\mathcal{H})$$

is a completely bounded bilinear mapping.

Proof. Apply Lemma 3 and (12), noticing that $||Y|| \leq 1$.

References

- V. I. Paulsen, Completely bounded maps and dilations, Longman Scientific & Technical, 1986.
- S. Wassermann, Exact C*-algebras and related topics, Lecture Notes Series No.19, Research Institute of Mathematics & Global Analysis Research Center, Seoul National University, Seoul, Korea, 1994.

Department of Mathematics Seoul National University Seoul 151-742, Korea