STABILITY OF TYPE CONDITION IN \mathbb{C}^n

SANGHYUN CHO

1. Introduction

In recent years, several questions about the complex function theory of a domain in \mathbb{C}^n have been studied for pseudoconvex domains of finite type. In [1,2], Catlin showed that the finite type condition is a necessary and sufficient condition for the subelliptic estimates for the $\overline{\partial}$ -Neumann problem. This subellipticity has been frequently the first step in studying function theories for the domains in \mathbb{C}^n .

Let Ω be a smoothly bounded domain in \mathbb{C}^n defined by r < 0, where $dr \neq 0$ on $b\Omega$, and $z_0 \in b\Omega$. We also assume that $\Delta_1(z_0)$, the type of z_0 , is finite and set $T' = (\Delta_1(z_0)/2)^{n-1}$. Then the following theorem has been proved by Catlin

THEOREM C. Let z_0 be a point in the boundary of a smoothly bounded pseudoconvex domain Ω . Assume that $\Delta_1(z_0) < \infty$. Then for any number $\epsilon > 0$, there exist a constant c_{ϵ} and a neighborhood U_{ϵ} such that if $\{M_{\sigma}; \sigma \in \Sigma\}$ is any family of 1-dimensional complex manifolds of diameter less than or equal to σ contained in U_{ϵ} , then

(1)
$$\sup \{|r(z)|; z \in M_{\sigma}\} \ge c_{\epsilon} \sigma^{2T' + \epsilon}$$

REMARK 1.1. In particular, if we set $\epsilon = 1$ in above theorem, (1) says that there is a neighborhood U_1 of z_0 such that the type is stable (bounded by 2T' + 1) on $b\Omega \cap U_1$.

In this paper, we will extend Theorem C and prove the stability of type condition under a small perturbations of the boundary of Ω near

Received August 11, 1994. Revised October 14, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 32F15.

Key words and phrases: Finite 1-type, pseudoconvex domains.

Partially supported by KOSEF 941-0100-037-2 1994-1995 and by GARC-KOSEF 1994.

 z_0 . This theorem has been mentioned in [3,4,5]. For a function f which is smooth on $\overline{U}_1 \ni z_0$, we set

$$B_{\delta}^{k}(f, U_{1})$$

$$= \left\{ g \in C^{\infty}(\mathbb{C}^{n}); \sup_{z \in \overline{U}_{1}} |D^{\alpha}(f - g)(z)| < \delta \text{ for all } |\alpha| \le k \right\}.$$

Therefore $B_{\delta}^{k}(f, U_{1})$ is a δ -neighborhood of f in C^{k} -norm on \overline{U}_{1} . Set T'' = [T']. Here we denote [x] the smallest integer bigger than or equal to x. Then we prove

THEOREM 1. Let $z_0 \in b\Omega$ with $\Delta_1(z_0) < \infty$. Then for any $\epsilon > 0$, there exist a constant c_{ϵ} and a neighborhood $U_{\epsilon} \subset \subset U_1$ and σ_{ϵ} , $\delta_{\epsilon} > 0$ such that for any 1-dimensional manifold M_{σ} of diameter less than or equal to σ_{ϵ} contained in U_{ϵ} and for any $\rho \in B_{\delta}^{2T''+1}(r, U_1)$, we have

(2)
$$\sup \{ |\rho(z)|; z \in M_{\sigma} \} \ge c_{\epsilon} \sigma^{2T' + \epsilon}$$

REMARK 1.2. (2) says that the type is bounded by $2T' + \epsilon$ on $U_{\epsilon} \cap b\Omega_{\rho}$, where Ω_{ρ} is the domain with defining function ρ .

As an immediate corollary (take $\epsilon = 1$), we can prove

COROLLARY 2. Let $\Delta_1(z_0) < \infty$ and $T' = (\Delta_1(z_0)/2)^{n-1}$. Then there is a neighborhood $U_0 \subset \subset U_1$ of z_0 such that the type is bounded by 2T' + 1 on $U_0 \cap b\Omega_{\rho}$, where Ω_{ρ} is an arbitrary small perturbation of Ω with defining function ρ .

2. Notation and preliminaries

In this section, we adopt D'Angelo's notation and results in [6]. Let $\mathcal{O}_{z_0} = \mathcal{O}_{n,z_0}$ denote the local ring of germs of holomorphic functions at z_0 in \mathbb{C}^n .

DEFINITION 2.1. Let $\mathcal{C} = \mathcal{C}(1,0;n,z_0)$ denote the set of germs of holomorphic maps z such that $z: \mathbb{C}^1 \longrightarrow \mathbb{C}^n$ and $z(0) = z_0$.

DEFINITION 2.2. Let $\nu(g)$ denote the order of vanishing of a function g at 0. Let I be a proper ideal in \mathcal{O}_{n,z_0} then define

(3)
$$\tau^*(I) = \sup_{z \in \mathcal{C}} \inf_{g \in I} \nu(z^*g) / \nu(z)$$

$$(4) D(I) = dim_{\mathbb{C}}(\mathcal{O}/I)$$

In [6] D'Angelo proved the following theorem which relates D(I) and τ^* .

THEOREM 2.3. (D'Angelo [6, Theorem 2.7]) Suppose that I is a proper ideal in \mathcal{O}_{n,z_0} and that I contains q independent linear forms. Then the following sharp inequalities hold

(5)
$$\tau^*(I) \le D(I) \le (\tau^*(I))^{n-q}.$$

Suppose r is a local defining function for Ω . Set $M = b\Omega = \{z; r(z) = 0\}$. Then M is a smooth real hypersurface of \mathbb{C}^n . Let us consider hypersurfaces defined by Taylor polynomials of r. Suppose that k is an integer. We write $j_{k,p}r$ for the k-th order Taylor polynomial at the point p of the function r. Thus

$$(j_{k,p})(z,\overline{z}) = \sum_{|\alpha+\beta| \le k} \frac{(D^{\alpha}\overline{D}^{\beta}r)(p)}{\alpha! \beta!} (z-p)^{\alpha} (\overline{z}-\overline{p})^{\beta}.$$

Notice that $r_k = j_{k,p}r - r(p)$ is a real valued polynomial on \mathbb{C}^n that vanishes at p. We write $\Delta(M_k, p)$ for the order of contact of the hypersurface defined by this polynomial r_k . Then we have the following theorem.

THEOREM 2.4. (D'Angelo [6, Theorem 4.4]) Let M be a real hypersurface of \mathbb{C}^n , and let p lie on M. Then the following are equivalent:

- (i) $\Delta_1(p)$ is finite
- (ii) There exists an integer k_0 , so that if k is larger than or equal to k_0 , $\Delta(M_k, p)$ equals $\Delta(M, p)$ and is finite. Thus $\Delta(M_k, p)$ is eventually constant with final value $\Delta_1(p)$.
- (iii) There is an integer k_0 , so that for k larger than or equal to k_0 , we have $\Delta(M_k, p) \leq k$.

With this theorem, we may replace r by its k-th order Taylor polynomial r_k for some k. Therefore we will study r_k from now on. D'Angelo also showed that any real valued polynomial in \mathbb{C}^n can be decomposed by holomorphic functions. Let W = W(n,k) denote the vector space of all polynomials on \mathbb{C}^n , in the variable z and \overline{z} , which are of degree less than or equal to k. Let H = H(n,k) denote the vector space of all holomorphic polynomials in W.

PROPOSITION 2.5. (D'Angelo [6, Proposition 3.1]) Suppose that r is a real valued element of W, and that $r(z_0) = 0$. Suppose also that the coefficients of r are continuous (smooth) functions of a parameter λ . Then there is an integer N = N(n,k), independent of r, and elements $h, f_1, ..., f_N, g_1, ..., g_N$ in H(n,k) so that

- (i) $r(z,\overline{z}) = 2Re(h(z)) + \sum_{j=1}^{N} |f_j(z)|^2 \sum_{j=1}^{N} |g_j(z)|^2$
- (ii) z_0 lies in the variety defined by h and all the f_j and g_j
- (iii) The coefficients of h, f and g_j are all continuous (smooth) functions of the parameter λ .

DEFINITION 2.6. Let r be a real valued polynomial in W(n,k). Suppose that $r(z,\overline{z}) = 2Re(h(z-z_0)) + ||f(z-z_0)||^2 - ||g(z-z_0)||^2$ is a holomorphic decomposition for r. Let U be a unitary martice in \mathbb{C}^n . Then set $I(U,z_0) = (h, f-Ug)$ equal to the ideal generated by h and the components of f-Ug.

Finally, we have the following relation between $\tau^*(I(U, z_0))$ and $\Delta_1(z_0)$.

THEOREM 2.7. (D'Angelo [6, Theorem 5.3]) Suppose $b\Omega$ is pseudoconvex near $z_0 \in b\Omega$. Then $\Delta_1(z_0) = 2 \sup_{U \in \mathcal{U}(N)} \tau^*(I(U, z_0))$ where $\mathcal{U}(N)$ denotes the group of $N \times N$ unitary matrices.

3. Proof of Theorem 1

We may assume that coordinates $(z_1, ..., z_n)$ have been chosen around z_0 so that $\partial r/\partial x_n(z_0) \neq 0$, where $z_n = x_n + iy_n$. If the conclusion (2) does not hold, then there must be an $\epsilon > 0$ such that we have a sequence of manifolds $\{M_{\sigma_k}\}$ and a sequence of functions $\{r_{\delta_k}\}$, $r_{\delta_k} \in R_{\delta_k}^{2T''+1}(r, U(z_0))$ with $\{\sigma_k\}$, $\{\delta_k\} \to 0$ such that

(6)
$$\sup\{|r_{\delta_k}(z)|; z \in M_{\sigma_k}\} \le C\sigma_k^{2T'+\epsilon}$$

Let $g^k; B^1_{\sigma_k} \longrightarrow \mathbb{C}^n$ be a parametrization of M_{σ_k} ; i.e., $g^k(0) = w^k$ and $0 < c \le |dg^k(z')| \le C$ for all $z' \in B^1_{\sigma_k}(0)$ where $B^1_{\sigma_k}$ denotes a disc around 0 with radius σ_k and c, C are independent of k. Set $r_{\delta_k} = r_k$. Since we may assume that (2) fails in every neighborhood U around z_0 , we may choose the manifolds M_{σ_k} so that

$$\lim_{k \to \infty} g^k(0) = \lim_{k \to \infty} w^k = z_0.$$

Since $|r_k(g^k(0))| \leq C\sigma_k^{2T'+\epsilon}$, we may certainly assume that $g^k(0) = w^k$ satisfies $r_k(g^k(0)) = 0$, for if not, we need only shift M_{σ_k} by an amount of order of magnitude $|r_k(g^k(0))|$ in a direction transverse to $b\Omega$. Using Cauchy's estimates (as in [2], Theorem 3.4), we may assume that

$$\lim_{k \to \infty} \sup \left\{ |dg^{k}(\xi) - dg^{k}(0)|; \xi \in B_{\sigma_{k}}^{1} \right\} = 0$$

and that each component of g^k is a polynomial of a given $\deg (M)$ that is independent of k (Here we have to replace σ_k by $\sigma_k^b = \sigma_k'$ and ϵ by ϵ' where b>1 and $\epsilon'<\epsilon$ as in [2], Theorem 3.4). By Proposition 2.5, we have a holomorphic decomposition of Taylor polynomial of r_k up to order 2T''+1 for each k as follows

$$r_k(z) = 2Re(h_k) + \sum_{j=1}^{N} |F_j^k(z - w^k)|^2 - |G_j^k(z - w^k)|^2 + C(|z - w^k|^{2T''+1})$$

where h_k is a polynomial of degree 2T'' and F_j^k , G_j^k are holomorphic polynomials of degree T'' and C does not depend on k. If we write the holomorphic decomposition for r at w^k , we also have

$$r(z) = 2Re(\widetilde{h_k}) + \sum_{j=1}^{N} |\widetilde{F_j^k}(z - w^k)|^2 - |\widetilde{G_j^k}(z - w^k)|^2 + C(|z - w^k|^{2T'' + 1}).$$

Here, C also does not depend on k. Then by the definition of r_k , we have

(7)
$$\sup_{\substack{|\alpha| \leq 2T'' \\ z \in U(z_0)}} |D^{\alpha} \widetilde{h_k}(z) - D^{\alpha} h_k(z)| < \delta_k$$

$$\sup_{\substack{|\alpha| \leq T'' \\ z \in U(z_0)}} |D^{\alpha} \widetilde{F^k}(z) - D^{\alpha} F^k(z)| < \delta_k$$

$$\sup_{\substack{|\alpha| \leq T'' \\ z \in U(z_0)}} |D^{\alpha} \widetilde{G^k}(z) - D^{\alpha} G^k(z)| < \delta_k$$

where \widetilde{F}^k , \widetilde{G}^k , F^k , G^k are vector valued functions. Let h_0, F_j^0, G_j^0 be the same functions (for r) constructed around the point z_0 . Since w^k approaches to z_0 , the construction in [6] shows that

$$\lim_{k \to \infty} h_k = h_0, \quad \lim_{k \to \infty} F_j^k = F_j^0 \quad \lim_{k \to \infty} G_j^k = G_j^0$$

From this point on, we follow Catlin's [2] proof of Theorem 3.4. Then we can show that

(8)
$$|D_{\xi}^{j}(h_{k}\circ g^{k})(0)| \leq C\sigma_{k}^{2T''+\epsilon-j}, \quad j \leq 2T''$$

and there exist $N\times N$ unitary matrices $U^k=[U^k_{j,l}],\, 1\leq j,l\leq N$ such that

(9)
$$|D_{\mathcal{E}}^{j}((F^{k} - U^{k}G^{k}) \circ g^{k})(0)| \leq C\sigma_{k}^{T'' - j + \epsilon/2} \text{ for } j = 1, 2, ..., T''$$

Using (8) we can assume that (through the change of coordinates as in [2], Theorem 3.4) $h_k \circ g^k$ vanishes to order at least 2T'' + 1 at $\xi = 0$. Let $I_k(U^k, w^k)$ denote the ideal of germs of holomorphic functions about the point w^k generated by the components of $F^k - U^k G^k$. If f is any of these generators, (9) amounts to T'' linear relations satisfied by the derivatives of f of order at most T''. If we set $X_{\alpha}^k = (D_z^{\alpha} f)(w^k)$, where $|\alpha| \leq T''$, then (9) gives T'' equations

(10)
$$\sum_{0 < |\alpha| < T''} C_{j,\alpha}^k X_{\alpha}^k = \mathcal{O}(\sigma_k^{\epsilon/2}), \qquad j = 1, 2, ..., T''$$

Since $dg^k \neq 0$ we may assume that $g_1^k(\xi) = \xi + w_1^k$. By the Lemma 3.6 in [2], we may assume that $C_{j,\alpha}^k$ are uniformly bounded, and this matrix has a $T'' \times T''$ minor whose determinant is bounded away from zero(uniformly in k). After extracting a subsequence in k, and from the relation (7), we may assume that

$$C_{j,\alpha}^k \to d_{j,\alpha}^0, X_{\alpha}^k \to X_{\alpha}^0, U^k \to U^0 \text{ and } h^k \to h_0.$$

So the equation (10) converges to T'' linearly independent equations of the form

(11)
$$\sum_{0 \le |\alpha| \le T''} d_{j,\alpha}^0 X_{\alpha}^0 = 0, \qquad j = 1, 2, ..., T''.$$

Then (11) shows that $(I(F^0 - U^0G^0))$ (as defined in (4)) has codimension at least T'' + 1. (Recall that f(0) = 0 if f is in this ideal by the construction of F and G). Recall also that for each k, $h_k \circ g^k$ vanishes to order 2T'' + 1. Thus T'' conditions apply only to the values of $F^k - U^kG^k$ on the manifold $\{z; h_k(z) = 0\}$. Therefore if we let $I(F^0 - U^0G^0, h_0)$ denote the ideal obtained by adjoining the function h_0 , then we still have $D(I(F^0 - U^0G^0, h_0)) \geq T'' + 1$. Since we can consider h_0 is a coordinate function, Theorem 2.3 tells us that

$$D(I) \le (\tau^*(I))^{n-1}$$

where $I = I(F^0 - U^0G^0, h_0)$. Therefore,

(12)
$$(\Delta_1(z_0)/2)^{n-1} < T'' + 1 \le D(I) \le (\tau^*(I))^{n-1}.$$

If we combine (12) and Theorem 2.7, we will get

$$\Delta_1(z_0) < 2\tau^*(I(F^0 - U^0G^0, h_0)) \le 2 \sup_{U \in \mathcal{U}(N)} \tau^*(I(U, z_0)) = \Delta_1(z_0).$$

This contradiction proves that the assumption (6) is false and therefore that Theorem 1 holds. \square

REMARK. If we take $\tilde{r} = r$ then (2) holds for r.

References

- Catlin D. W., Necessary conditions for subellipticity of the ∂-Neumann problem, Ann. of Math. 117 (1983), 147-171.
- 2. Catlin, D. W., Subelliptic estimates for the $\overline{\partial}$ -Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131-191.
- 3. Cho, S., Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), 105-120.
- 4. Cho, S., A lower bound on the Kobayashi metric near a point of finite type in \mathbb{C}^n , J. of Geom. Anal. 2 (1992), 317-325.
- 5. Cho, S., H. R. Cho and K. H. Shen, Stability of the estimates for Θ-equation on compact pseudoconvex complex manifolds, Kyushu J. of Math. 48 (1994), 19-34.
- 6. D'Angelo, J., Real hypersurfaces, order of contact, and applications, Ann. of Math. 115 (1982), 615-637.

Department of Math. Education Pusan National University Pusan, 609-735, Korea

E-mail: cho@hyowon.cc.pusan.ac.kr