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STABILITY OF TYPE CONDITION IN C"

SANGHYUN CHO

1. Introduction

In recent years, several questions about the complex function theory
of a domain in C" have been studied for pseudoconvex domains of finite
type. In [1,2], Catlin showed that the finite type condition is a necessary
and sufficient condition for the subelliptic estimates for the 9-Neumann
problem. This subellipticity has been frequently the first step in studying
function theories for the domains in C".

Let €2 be a smoothly bounded domain in C* defined by r < 0, where
dr # 0 on b2, and zo € b2. We also assume that A;(z9), the type of zp,
is finite and set 7' = (A1(20)/2)*~!. Then the following theorem has
been proved by Catlin

THEOREM C. Let 29 be a point in the boundary of a smoothly
bounded pseudoconvex domain . Assume that A;(z9) < oco. Then
for any number € > 0, there exist a constant ¢ and a neighborhood
Ue such that if {My;0 € L} is any family of 1-dimensional complex
manifolds of diameter less than or equal to o contained in U, then

(1) sup {|r(z)];z € My} > ceo?T'

REMARK 1.1. In particular, if we set € = 1 in above theorem, (1)
says that there is a neighborhood U of zp such that the type is stable
(bounded by 27" + 1) on Q2 N U;.

In this paper, we will extend Theorem C and prove the stability of
type condition under a small perturbations of the boundary of Q near
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zo. This theorem has been mentioned in {3,4,5]. For a function f which
is smooth on Uy 3 29, we set

Bék(f,Ul)

zelU,

= {g € C=(C"); sup |D*(f — g)(z)| < é for all [af < k} .

Therefore BX¥(f,U1) is a §-neighborhood of f in C*-norm on U,. Set
T" = [T’]. Here we denote [z] the smallest integer bigger than or equal
to z. Then we prove

THEOREM 1. Let zp € b2 with Ay(z0) < co. Then for any € > 0,
there exist a constant ¢, and a neighborhood U, CZ U and o, 6 > 0
such that for any 1-dimensional manifold M, of diameter less than or
equal to o contained in U, and for any p € B:;:T”“(r, Uy), we have

(2) sup {|p(2)};z € My} > c.a®T ¢

REMARK 1.2. (2) says that the type is bounded by 2T'+¢€ on U.NbQ,,
where €2, is the domain with defining function p.

As an immediate corollary (take € = 1), we can prove

COROLLARY 2. Let Ay(29) < oo and T’ = (A1(20)/2)""'. Then
there is a neighborhood Uy CC Uy of zo such that the type is bounded
by 2T' + 1 on Uy N b2, where Q, is an arbitrary small perturbation of
Q with defining function p.

2. Notation and preliminaries

In this section, we adopt D’Angelo’s notation and results in [6]. Let
0., = On,;, denote the local ring of germs of holomorphic functions at
20 in C*,

DEFINITION 2.1. Let C = C(1,0;n,29) denote the set of germs of
holomorphic maps z such that 2z : C' — C™ and 2(0) = z.
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DEFINITION 2.2. Let v(g) denote the order of vanishing of a function
g at 0. Let I be a proper ideal in O, ,, then define

(3) (1) = sup ;rg’] v(z*g)/v(z)
(4) D(I) = dimc(O/1)

In [6] D’Angelo proved the following theorem which relates D(I) and

T*.

THEOREM 2.3. (D’Angelo [6, Theorem 2.7 |) Suppose that I is a
proper ideal in Oy ;, and that I contains q independent linear forms.
Then the following sharp inequalities hold

(5) (1) < D(I) < (7*(1))"" 7.

Suppose r is a local defining function for Q. Set M = b2 = {z;r(2) =
0}. Then M is a smooth real hypersurface of C*. Let us consider
hypersurfaces defined by Taylor polynomials of r. Suppose that k is an
integer. We write j pr for the k-th order Taylor polynomial at the point
p of the function r. Thus

a_ﬂr
Geadem) = 3 D

la+BI<k

-p)(z-5)".

Notice that 7y = jx ,r — 7(p) is a real valued polynomial on C" that
vanishes at p. We write A(Mg,p) for the order of contact of the hy-
persurface defined by this polynomial rx. Then we have the following
theorem.

THEOREM 2.4. ( D’Angelo [6, Theorem 4.4| ) Let M be a real hy-
persurface of C"*, and let p lie on M. Then the following are equivalent:
(i) Ai(p) is finite
(i1) There exists an integer ko, so that if k is larger than or equal
to ko, A(My,p) equals A(M,p) and is finite. Thus A(My,p) is
eventually constant with final value A, (p).

(iii) There is an integer kg, so that for k larger than or equal to ko,
we have A(Mg,p) < k.
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With this theorem, we may replace r by its k-th order Taylor polyno-
mial 7 for some k. Therefore we will study rx from now on. D’Angelo
also showed that any real valued polynomial in C" can be decomposed
by holomorphic functions. Let W = W(n, k) denote the vector space
of all polynomials on C", in the variable z and Z, which are of degree
less than or equal to k. Let H = H(n, k) denote the vector space of all
holomorphic polynomials in W.

PRrOPOSITION 2.5. ( D’Angelo [6, Proposition 3.1 | ) Suppose that r
is a real valued element of W, and that r(z9) = 0. Suppose also that
the coefficients of r are continuous (smooth) functions of a parameter A.
Then there is an integer N = N(n, k), independent of r, and elements

h, fiy.... fn, 91, -, 9n in H(n, k) so that
. — N .
(i) r(z,7) = 2Re(h()) + T, 1) = Z,2, 1o ()
(i1) 2o lies in the variety defined by h and all the f; and g;

(iii) The coefficients of h,f and g; are all continuous (smooth) func-
tions of the parameter M.

DEFINITION 2.6. Let r be a real valued polynomial in W(n, k). Sup-
pose that r(z,Z) = 2Re(h(z — z0)) + || f(z — 2z0)||* — |lg(z — z0)||* is a
holomorphic decomposition for r. Let U be a unitary martice in C".
Then set I(U,zp) = (h, f — Ug) equal to the ideal generated by h and
the components of f — Uyg.

Finally, we have the following relation between 7*(I(U, z0)) and A;(zo).
THEOREM 2.7. ( D’Angelo [6, Theorem 5.3 | ) Suppose bS) is pseu-

doconvex near zo € bQ. Then A1(z0) = 2supyey(n) 77 (I(U, 20)) where
U(N) denotes the group of N x N unitary matrices.

3. Proof of Theorem 1

We may assume that coordinates (zy, ..., zn ) have been chosen around
zg so that Or/0z,(z9) # 0, where z, = z, + iy,. If the conclusion
(2) does not hold, then there must be an € > 0 such that we have a
sequence of manifolds {M,,} and a sequence of functions {rs, }, rs, €

R2T"HY(r U(20)) with {04}, {6x} — 0 such that
(6) sup {|rs, (2)];z € M,,} < Co?T'*e
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Let gk;B},k — C" be a parametrization of M,,; i.e., ¢¥(0) = w* and
0 < ¢ < |dg*(z")| < C for all 2’ € B.,(0) where B!, denotes a disc
around 0 with radius o4 and ¢,C are independent of k. Set T6, = Tk.
Since we may assume that (2) fails in every neighborhood U around zq,
we may choose the manifolds M,, so that

lim gk(O) = lim w* = z,.
k—oco k—o0

Since |rk(¢g%(0))] < C’aiTl+e, we may certainly assume that ¢*(0) = w*
satisfies rx(g*(0)) = 0, for if not, we need only shift M,, by an amount
of order of magnitude |ri(¢¥(0))| in a direction transverse to b2. Using
Cauchy’s estimates (as in [2], Theorem 3.4 ), we may assume that

Jim sup {|dg"(¢) ~ dg*(0)|:¢ € By, } = 0

and that each component of g* is a polynomial of a given degree(M)
that is independent of k (Here we have to replace o) by ol = o} and ¢
by €' where b > 1 and € < € as in [2], Theorem 3.4 ). By Proposition
2.5, we have a holomorphic decomposition of Taylor polynomial of ri up
to order 27" + 1 for each k as follows

N
rk(z) = 2Re(hy) + Z lFf(z —wk)? - IG;C(;: — wk)|?

j=1
+ C(IZ _ wk|2T”+l)

where hy is a polynomial of degree 27" and F ,k , G;“ are holomorphic
polynomials of degree 7" and C does not depend on k. If we write the
holomorphic decomposition for r at w*, we also have

N
r(z) = 2Re(hi) + Y |FX(z — wb)] = |GH(z — w)?
i=1

+C(lz — w* [T,
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Here, C also does not depend on k. Then by the definition of ri, we
have

sup IDGE]:(Z) — D%h(2)]| < b
la<2T"
2€U(z0)
sup ID“F"(z) — D*F*(2)| < ¢&
(7) |a|<T”"
z€U(z0)
sup |D*G*(z) — D*G*(2)} < éx
la|<T"
z€U(20)

where F¥, G¥, F* G* are vector valued functions. Let hO,FJ‘-),G? be

the same functions (for r) constructed around the point zy. Since w*

approaches to zg, the construction in (6] shows that

kli—>nolo fuc = ho, kli—>nc}o F]k - F]Q kli—»n;o Gi» - G?
From this point on, we follow Catlin’s [2] proof of Theorem 3.4. Then
we can show that

(8) IDi(hi 0 g*)(0)| < Co}" I, j <21

and there exist N x N unitary matrices UF = [U]k,[;, 1 <7, <N such
that

(9)  IDL(F* —U*G*) o g*)(0) < Coy */* for j=1,2,...T"

Using (8) we can assume that (through the change of coordinates as in
[2], Theorem 3.4 ) ht o g* vanishes to order at least 27" + 1 at £ = 0.
Let It(U*, w*) denote the ideal of germs of holomorphic functions about
the point w* generated by the components of F¥ — U*G*. If f is any
of these generators, (9) amounts to 7" linear relations satisfied by the
derivatives of f of order at most T". If we set X* = (D2 f)(w*), where
la] < T", then (9) gives T" equations

(10) Z Cjk’an = 0(02/2)’ ] =1,2, ..,T"
o<]a)LT"
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Since dg* # 0 we may assume that g%¥(€) = ¢ + w¥. By the Lemma

3.6 in [2], we may assume that C; k '« are uniformly bounded, and this
matrix has a T x T" minor whose determinant is bounded away from
zero(uniformly in k). After extracting a subsequence in k, and from the
relation (7), we may assume that

C’jk,a—>d°~

]’a,

XEo X2 UK U and RF - k.

So the equation (10) converges to 7" linearly independent equations of
the form

(11) Y d.X) = i=12..T"

0<]al<T"

Then (11) shows that (I(F® — U°G")) (as defined in (4)) has codimen-
sion at least 7" 4 1. (Recall that f(0) = 0 if f is in this ideal by the
construction of F' and G). Recall also that for each k, kit 0g* vanishes to
order 27" +1. Thus T" conditions apply only to the values of F¥ —U*G*
on the manifold {z;hx(z) = 0}. Therefore if we let I(F® — U°G?, h¢)
denote the ideal obtained by adjoining the function kg, then we still have
D(I(F*~U®G" hg)) > T" + 1. Since we can consider hy is a coordinate
function, Theorem 2.3 tells us that

D(I) < (r(I)"!
where I = I(F® — U°G®, hq). Therefore,
(12) (A1(20)/2)" 7 < T" +1 < D) < (2"
If we combine (12) and Theorem 2.7, we will get

A1(z0) < 27*(I(F® — UG ko)) <2 sup *(I(U,z)) = Aq(z0).
UeU(N)

This contradiction proves that the assumption (6) is false and therefore
that Theorem 1 holds. [

REMARK. If we take 7 = r then (2) holds for r.
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