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ON PRINCIPAL IDEALS IN POLYNOMIAL RINGS

CHUL KON BAE AND JUNE WON PARK

Throughout this paper R will always denote an integral domain with
the quotient field K. Let A denote the polynomial ring R[z], I be an
ideal of A, Iy =T ®@r K and J = I N A.

Kanemitsu and Yoshida([2]) proved as a main result that if I is an
ideal in R[z] such that 7N R = (0), then the following conditions are
equivalent :

(1) There exists a Sharma polynomial of degree d in I where d is
the least degree of polynomials in I.

(2) I is a principal ideal and I = Ix N A.
If, moreover, R is noetherian, the above conditions are equiva-
lent to :

(3) Iy(z) is a principal ideal and I = Iy N A.

In this paper, we prove (1), (2) and (3) are equivalent in the same
integral domain R(not necessarily noetherian).

DEFINITION 1. Let f(z) = apz? + a12% ' + - + ag(ap # 0) be a
polynomial in R[z]. f(z) is called a Sharma polynomial if there does not
exist t € apR such that ta; € qgR for 0 <: < d.

For example, a monic polynomial in R[z] is a Sharma polynomial.
Also, the Sharma polynomials in Z[z] are precisely the primitive poly-
nomials where Z is the ring of integers.

In the following let f(z) = apa® + a12%™! + -+ + aqa(ao # 0) be a
polynomial in A = R[z] and (z) = z¢ + ayz? ' + --- + aq be the
polynomial in K[z] such that a; = a;/a¢ for 1 < < d.

Also we put Iy(;) = {a € R | ah(z) € R[z]} if h(z) € K[z].
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PROPOSITION 2. ({2, proposition 4]) Let R be an integral domain
with the quotient field K and f(z),®(z),ao, - ,aq be as in the above.
Then the following conditions are equivalent:

(1) f(z) is a Sharma polynomial, that is, there does not exist t ¢
ag R such that ta; € apR for 0 < i < d.

(2) e(f(z))™' = R where c(f(z)) = (ao,a1,--- ,a4)R and ¢(f(z))™"
= R :x (f(z)).

(3) IO(X) = aoR.

REMARK 1. For an ideal I of A = Rz}, I is a principal ideal of K[z]
and so I = h(z)K[z] where h(z) is a monic polynomial in K[z]. Put
d = deg h(z). Then d is the least degree of polynomials in I. Clearly,
h(z) is uniquely determined by I. We note that I N R = (0) if and only
if I C Klz.

REMARK 2. Let J = Ix N A and Jy = J ®@r K. Then we have
Ix = Jx and main{deg g(z) | g(z) € I} = min{deg g(z) | g(z) € J} =
min{deg g(z) | g(z) € Ix} = min{deg g(z) | 9(z) € Tk }.

LEMMA 3. Let I be a principal ideal in A = R[z] such that I = f(z)A,
where f(z) = apz® + a1z® 1+ +ag. Let I = Ix N A and Iy =
h(z)K[z], where h(z) is a monic polynomial in K[z] Then h(z) = §(z),
where )(z) = 44 ayz% '+ -+ ay such that a; = a; ifap for 1 < i <d.

Proof. Since §(z) € Iy ,0(x) is minimal degree in Ix by Remark
2 and h(z) and @(z) are monic polynomials of degree d in Ix. So,
h(z) — O(z) € Ix and deg(h(z) — O(z)) < d. Therefore h(z) — O(z) = 0,
that is, h(z) = 0(z).

Now we will prove the main result which is the extension of [2,Theo-
rem ).

THEOREM 4. Let A = R[z]| be a polynomial ring over an integral
domain with the quotient field K and let I be an ideal in A such that
INR = (0). Let Ix = IQr K and h(z) be the monic polynomial over K
such that Ix = h(z)K[z]. Then the following conditions are equivalent

(1) There exists a Sharma polynomial of degree d in I where d is
the least degree of polynomials in I.
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(2) I is a principal ideal and I = I'x N A.
(3) In(s) is a principal ideal and I = Iy N A.

Proof.

(1) <= (2) See[2, Theorem 5].

(3) = (1) Suppose that Ix(z) = aR. Put ah(z) = f(z). Then
f(z) € IkNA = I. Since the leading coefficient of f(z)is a and I;(z) =
aR, it follows that f(z) is a Sharma polynomial by Proposition 2. By
Remark 2, f(z) is a polynomial of least degree d in I. Consequently, we
proved that (3) implies (1).

(2) = (3) Since I is a principal ideal, let I = f(z)A. Then §(z) =
h(z) by Lemma 3.

On the other hand, let f(2) = ap2? 4+ a12% ' + .-+ + a4. Then d is
the smallest degree of polynomials in I. Suppose there exist t ¢ aoR
such that ta; € apR for 0 < i < d. Put a = t/ap. Then o ¢ R and
aa; € Rfor 1 <1 < d. Let g(z) = f(z)(z + a)(= zf(x) + af(z)).
Since zf(z) € A and every coefficient aa; of «f(z) is contained in R,
we have g(z) € R[z] = A. Thus g(z) € IxN A =1 = f(z)A. Hence
g(z)/f(z) =x +a € A. So a € R. This is a contradiction. This means
f(z) is a Sharma polynomial of degree d in I. So by Proposition 2, Iy(,)
is a principal ideal.

Therefore, I,y is a principal ideal.

The following proposition is also the extension of [2,Proposition 6].

PROPOSITION 5. Let R be a unique factorization domain with the
quotient field K and I be an ideal of A = R[z] such that I N R = (0).
Put Ix =1 ®@r K and J = Ixx N A. Then J is a principal ideal of A.

Proof. Since Iy is principal, We can assume Ix = h(z)K[x] where
h(z) = 2% 4+ c12% 1 + ... 4 ¢4 for 1 <1 < d. Then I,y = ﬂflzl{a €
R | ac; € R}. Since R is a unique factorization domain, by[3, Theorem
8.34], Iy(,) 1s principal.

On the other hand, Iy = Ji by Remark 2. Hence J is a principal
ideal of A by Theorem 4.
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