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TOTALLY REAL SUBMANIFOLDS
WITH PARALLEL MEAN CURVATURE
VECTOR IN A COMPLEX SPACE FORM*

U-HANG KiI, BYung HAak KiM axp HE-JIN KiMm

1. Introduction

Let M,(c) be an n-dimensional complete and simply connected
Kahlerian manifold of constant holomorphic sectional curvature ¢, whi
ch is called a complez space form. Then according to ¢ > 0,c = 0 or
¢ < 01it is a complex projective space P,C, a complex Euclidean space
C™ or a complex hyperbolic space H,C. An n-dimensional subman-
ifold M in a complex space form M,(c) with complex structure J is
said to be totally real if it satisfies J, (T, M) = N, M at any point z
in M, where T, M(resp. N,M) denotes the tangent space (resp. the
normal space) of M at r in M. Totally real submanifolds in a complex
space form are studied by many authors from various points of view
(for examples :[1],[6],[10] and so on). In particular, for a compact min-
imal totally real submanifold M in P,C a sufficient condition for M
to become totally geodesic is first given by Chen and Ogiue (1]. Let S
be the square of the length of the second fundamental form a of M.
Then they proved the following

THEOREM A [1]. Let M be an n-dimensional compact totally real
submanifold in P,C. If M is minimal and if it satisfies
n(n+ 1)
1.1 —_—
(1) S<in-1)"

then M is totally geodesic.

Now, it was pointed by Ludden, Okumura and Yano [6] that the
estimate (1.1) of the square norm S is best possible. The counter
example of the upper bound was also characterized in [6] as follows.
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THEOREM B. Let M be an n-dimensional compact totally real sub-
manifold in P,C. If M is minimal and if it satisfies

_ n{n+1)

—C

4(2n 1)

(1.2)

thenn =2 and M is S' x S' in P,C.

We denote by h the mean curvature vector on A and H be the
mean curvature of M 1.e., the norm of the mean curvature vector h.

The purpose of this paper is to investigate the similar problem to
the above theorems for complete totally real submanifolds with parallel
mean curvature vector in a complex space form and we obtain the
followings.

THEOREM 1. Let M be an n-dimensional complete totally real sub-
rnanifold with parallel mean curvature vector h in a complex projective
space P,,C of constant holomorphic sectional curvature c. If there exist
some Hy such that H < Hy and §; < § < supS < Sy, then M is
minimal. Consequently M is totally geodesic.

THEOREM 2. Let M be an n-dimensional complete totally real sub-
manifold with parallel mean curvature vector h in a corplex hyperholic
space H,C of constant holomorphic sectional curvature c. Assume that
H? < —%c. Then there exists a constant Sy so that if sup S < Sy, then
M is totally geodesic.

2. Preliminaries

Throughout this paper all manifolds are assumed to be smooth, con-
nected without boundary. We discuss in smooth category. In this sec-
tion we recall fundamental properties for totally real submanifolds in a
complex space form. A complete and simply connected Kahlerian man-
ifold of constant holomorphic sectional curvature is called a complex
space form. We denote by M,(c) an n-dimensional complex space form
of constant holomorphic sectional curvature c. It consists of a complex
projective space P,C, a complex Euclidean space C" and a complex
hyperbolic space H,C. Let J be the complex structure of M, (c). We
choose the local field of orthonormal frame ey, ..., en. 041 = Jeq,. ...
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ean = Jen adapted to the Kahlerian metric of M,(c) and the dual

coframe wy, ..., wy,. The components J4p of the complex structure
J =73 Japwa @ wp with respect to the frame field are given by
0 -I
2.1 = n
(2.1) JaB ( L0 )

Then connection forms {wap} of M,(c) are characterized by the struc-
ture equations

dwa+ Y wapAwp =0,wap+wpas =0,
(2.2) dosp +3 wac Awep = Qas,
Qap=—32 Ripcpwc Awp,
(2.3)
ABCD :2(5AD5BC —éactpp + JapJpc — JacIep — 2JaBJcp).

where Q 4 g(resp. R'; g ) denotes the Riemannian curvature form(resp.
the components of the Riemannian curvature tensor R') of M,(c). In
the sequel, the following convention on the range of indices is used,
unless otherwise stated:

1<AB.---<2n; 1<i,3,--<n; n+l1<a B, - <2n

We agree that the repeated indices under a summation sign without
indication are summed over the respective range.

Let M be a real n-dimensional submanifold of an n-dimensional
complex space form M,,(c). The submanifold M is said to be totally real
if it satiesfies J (T, M) = N, M at any point = in M, where T, M(resp.
N:M) denotes the tangent space (resp. the normal space) of M at r
in M.

In this paper we assume that M is an n-dimensional totally real
submanifold in M, (¢). Then we can choose a local field of orthonormal
frame e),...,e,, €041 = Jei, ..., 9, = Je, adapted to the Kahlerian
metric of M,(c) and the dual coframe w;,...,wsy, in such a way that,
restricted to the submanifold M, ey,... e, are tangent to M. The
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canonnical forms {w} and the connection forms {wap} restricted to
M are also denoted by the same symbols. We then have

(2.4) we =10 for a=n+1,...,2n.
We see that e1,...,e, is a local field of orthonormal frames adapted
to the induced Riemannian metric on M and wy, ..., w, is a local field

of its dual coframe on M . It follows from (2.2), (2.4) and Cartan's
lemma that we have

(2.5) Woi = Z hiws,  he = k%,
In particular, since M is totally real, we get
(2.6) A

The connection froms {w;;} of M are characterized the structure equa-
tions

dw; + Zwij Awj =10, wij+w;; =1,
(2.7) dwij + Y wik A wij == Qyj,
Qij = =3 3 Rijriwr A wy,

where (1;; (resp. R;jii) denotes the Riemannian curvature form (resp.
the components of the Riemannian curvature tensor R) of M. There-
fore, from (2.1), (2.2), (2.3) and (2.7), the Gauss equation is given
by

(2.8) Rijui = ( 165k — bikbjr) + Z(h = hikh3y)-

The components of the Ricci curvature Ric and the scalar curvature r
are given by

n —1
(29) RJk - CéJk + Z hn 7k Zh’]z 1k

(n —1 po
(2.10) c+ > {hgRS, - (h%)).
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We also have the structure equation for the normal bundle :

dwo + Y wag Awg = 0,
dwap + Y oway Awyp = =3 3 Rapijwi A wj,

(2.11) {
where we have again by (2.1),(2.2), (2.3) and (2.7) the Ricci equation

1 - o e
(2.12) Rysi5 = ZC(JQJ'J;% = Jaidgj) — L(hilhfl - h‘jlhg)'

The second fundamental form « and the mean curvature vector h of

M are defined by

(2.13) o= Z hjjwiwjeq, h= %Z(Z hﬁ-)ea.

The mean curvature H is defined by

(2.14) H=|h= % 3 (Z hg)z.

Let S = E(h;’})z denote the square of the length of the second funda-

mental form o of M. The components hik and R, of the covariant

differentials Vo and V2a of the second fundamental form are defined

by

(218) Y Afwr = dhG — > hfiwki— Y hGwi; — Y hiwsas

D et
=dh§y — Y hfwn — D higwy — 3 kS — Y b wpa,

respectively. The Codazzi equation and the Ricci formula for the sec-
ond fundamental form are given by

(2.16)

(2.17) ik — hik; =0,
(2.18)
Bk = e = =D _ AinBmjkt = Y hin; Riki = D hRaant
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The Laplacian AAS; of the components k{; of the second fundamental
form a is given by Ahg = 3, hy,. From (2.17) and (2.18) we get
(2.19)

ARG = hiey = 3 hfmRmik = O b Rmksk = Y i Rsajk.
k

We put Sap = Y hE R for any indices « and 3 and we denote by (Sa3)

gty
an n x n symmetric matrix. It can be assumed to be diagonalizable
for a suitable choice of ey, -+ .e2,. Set Su = Sae. We then have

5 =Y 8,. Next. for any matrix A = (a,;), we define N(A4) = tr(A'A).
Combining with the Gauss equation (2.8),(2.12) and (2.19) it follows
that we get

(2.20)
1 9 oo n+1 n? . 2
505 =[Val* + > RSk, + — ¢S - -2—.:112 =Y (Sa)
+y trH*trH*(H?)' = S" N(H°H® - H?H®),
where H* denotes an n x n symmetric matrix (A;}) for any index a.
The following generalized maximum principle due to Omori (8] and
Yau [12] will play an important role in this paper.

THEOREM 2.1. Let M be an n-dimensional complete Riemannian
manifold whose Ricci curvature is bounded from below. Let F be a
C?-function bounded from above on M. then for any ¢ > 0, there exists
a point p in M such that

F(p) + ¢ > supF, |gradF|(p) <e, AF(p) <e.

3. Minimal totally real submanifolds

This section is concerned with minimal totally real submanifolds in
P,C. Let M be an n-dimensional complete totally real submanifold
in a complex projective space P,C of constant holomorphic sectional
curvature ¢. We assume tnat M is minimal. Then by (2.20) we have

+1 .
k S =Y (Sa) - N N(H.H~ HsH,).
a# s

In order to estimate the last term bounded from below, we need the
following lemma due to Chern, do Carmo and Kobayashi [3].

1 .
(3.1) ZAS = Val +
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LEMMA 3.1. Let A and B be n x n symmetric matrices. Then we
have

(3.2) N(AB — BA) <2N(A)N(B),
where the equality holds for non-zero matrices A and B if and only if

A and B can be transformed simultaneously by an orthogonal matrix
into scalar multiples of the following matrices.

01
1 0

Moreover, if Ay, A2 and A3 are n x n symmetric matrices and if
N(AAj — A;A;) = 2N(A)N(4;)

for any distinct indices ¢ and j (1, = 1,2,3), then at least one of the
matrices A; must be zero.

By (3.1) and Lemma 3.1 we have

1 n+1 2
(3.3) SA8 > ——cS - D (Sa)* =2 SaSs.
a#p
Using this inequality we can prove the following

THEOREM 3.2. Let M be an n-dimensional complete totally real

submanifold in P,C. If M is minimal and if it satisfies sup S <
472(21“1))0 then M is totally geodesic.

Proof. First the function ¢, and o, are defined by

noy=3% S;=5. nn—1)o;=2)» 5.4

alf
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Then we get
(3.4) > (Sa)? =n(01)? +n(n — 1){(01)? = 02},
(3.5) E(S - 85)% = n?(n - 1D){(01)* = a2 }.

alf

Hence, using (3.4) and (3.5) we obtain

(3.6) Y (Sa)?+2 Y S, sf,_—Z(sa)u:z(ZS,,y)2 < (2—;11-)52,

a#p

where the equality holds if and only if (¢;)? = o, that is S, = Sy for
any distinct indices « and 4. Thus we have

2n —1 n+1

1
. —AS > — 2
(3.7) 588> —=——5"+ ——cS,

where the equality holds on M if and only if the second fundamental
form is parallel and the equality in (3.2) and (3.6) holds on M.

On the other hand, for any symmetric matrix A = (a;;) of order
n(> 2) it is seen by Hineva [5] that we have

1
A5 — (a,-j)z > ——§trA2.
for any distinct indices ¢ and j. Accordingly, for a fixed index o we get

hehs, — (hS)? > ——-tr(H") > —-;-5,

1 7))

which yields by (2.9)

n- lcugs}é,,-,

RijZ{

and hence the Ricci curvature on M is bounded from below. Since the
square norm S is also bounded by the assumption of the theorem, we
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can apply the generalized maximum principle (Theorem 2.1) to S. For
any given positive number ¢, there exists a point p at which S satisfies

(3.8) supS < S(p) +e€, |gradS|(p) <e AS(p)<e.

Consequently (3.7) is reduced to the following relationship

1 2n —1
(39) §€>~ n

; n+1
$*(p) + —=eS(p).

For a convergent sequence {€mn} such that e, — 0(m — oo) and
€ém > 0, there exists a point sequence {pn,} such that {S(pm)} con-
verges to Sy = supS by (3.8). On the other hand, it follows from (3.9)
that we have

1 2n—-1

1 _ 2 n-1
2fm S (Pm)+ 7 Cs(pm)-

Thus we get

SO{*.‘Zn—l n+1

So + C}S(),

which means Sy = supS = 0 by the assumption. Thus M is totally
geodesic.

REMARK. Theorem 3.2 is the complete and non-compact version of
Theorem A.

THEOREM 3.3. Let M be an n{> 2)-dimensional complete totally
real submanifold in P,C. If M is minimal and if it satisfies S =

471(21:::11)0, thenn =2 and M is S' x S in P,C.

Proof. Since S is constant, we have AS = 0 and hence by (3.7) we
have

(3.10) N(H®HP - HPH®) = 2N(H*)N(H?),
(311) n(n—l){(al)z——ag} :O,SQ ZSﬂ
for any distinct indices o and 3. By Lemma 3.1 the equation (3.10)

implies that at most two of the H*’s are non-zero. However (3.11)
means that if there is a zero matrix H®, then all matrices H? are zero
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and hence S = 0. This means that if n > 3, that M is totally geodesic,
a contradiction. Accordingly, the conclusion n = 2 is given.

Next we suppose there exist non-zero matrices H*’s. Then, again by
Lemma 3.1 there are exactly two H®’s different from the zero matrix
and we may suppose that

0 1 0
H? = 10 0
0 0 0

where X and g are constant, since the fundamental form is parallel.
Thus, by a theorem due to Ludden, Okumura and Yano [6]. the proof
is complete.

4. Totally real submanifolds with parallel mean curvature
vector

This section is devoted to the investigation about totally real sub-
manifolds with paralle]l mean curvature vector. Let M be an n(> 2)-
dimensional totally real submanifold with parallel mean curvature vec-
tor h in a complex space form M,(c). Because the mean curvature
vector is parallel, the mean curvature H is constant. Suppose H # 0.
Then we can choose e,4; in such a way that its direction coincides
with that of the mean curvature vector. Then it is easilv seen that we
have

(4.1) Wan+1 = 0. H = constant,

(4.2) trH" ! = nH trH® =0

for any index a(# n + 1). We here notice that for a submanifold M
with parallel mean curvature vector h in M, (c), it satisfies § > nH?,
where the equality holds on A if and only if M is totally umbilic.

Proof of Theorem 1. First M is supposed to be minimal. Then
by Theorem 3.2, the theorem is already verified. Accordingly we may
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suppose H 3 0 and we can choose the frame field treated above. Taking
account of (2.20), (3.6) and (4.3), we have

n+1

1
(4.3) SAS > - (9——)52 cS——cH2+nHLtrH"+1(H )2,
we estimate the last term bounded from below.
Since H™*! is symmetric matrix, we car choose {e1.--- .en} such
that
h,j = /\,‘(5,‘]'.

In order to estimate the last term of the above equation. we define

N A A

Then we can easily find Pniintint1 < (3 A2)Y/? by using Cauchy-
Schwarz’s inequality and the property of the complex structure J.
On the other hand, it is well known [7] that

tr(H"+1)2 = T’LHPn+1n+]n+1 -+ :CI(n - 1)

Using above properties, we obtain

nH — \/— (Z/\ )1/" nH+\/_

where D = n?H? + ¢(n — 1) >0.
Therefore we have
nH + VD nH +vVD

Ztan+J(Ha)22— Ho)'Z:__ 5

Thus we have
(4.4)

5852 - [(2- 1)

n2Hg?2 2?2 1 2 )
{ H +nH\/nH +(n-1%¢ n+1c}5+%cHz}

&

+ 2 2 4
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Now we consider the equation

(4.5)
2n—-1 , n?H? nH\/n?H?+(n-1)c n+1
fla) = n”’+{2+ 2 _46}‘”
) ,
+ I;—CHZ
Then we have
(4.6)
f(nH?)
n?H? nH\/n?H2+(n-1)c n-1
2 2 ;
=nH?|(2n ~ )H — 5 + ==,
(4.7)
- ZH? -1 -1
f(n2H?) = n?H? [MH2+”H\/” +(n=1)c n c}_
2 2 4
Put f(n?H?) = n?H?%g(H), where
g(H) = ["(5'2’_2)112—{—”1{ nzH;_Hn—l)c 2= L } Since ¢(0) = 1c<

0 and ¢g( H) is monotone increasing functlon, there exists some constant
Hj such that g(Hy) = 0. By the assumption of the theorem and above
statements there exist two roots S; and S, so that nAH? < S; < S,
and the function f is negative on (S;,S;). Making use of the same
argument as that in the proof of Theorem 3.2 and 3.3 we have the
conclusion that n > 3 and M is totally geodesic.

Proof of Theorem 2. In order to estimate the last term of equation
(4.3) in the case of ¢ < 0, we need the following property which is
proved by cheng and Choi [2].

LEMMA Let al, .-+ ,an be bounded real numbers satisfying Y a; =
0 > a (a> O) and by, - -+ , b, be also real numbers satisfying
()% = b2(b > 0). Then we have

n-—1
|Zai(bz')2\ < - ab?,

where the equality holds if and only if the n — 1 a; are equal to

F, /;rnl__—l)a with each other and the corresponding n—1  b; are equal
to 0.



Totally real submanifolds with parallel mean curvature vector 847

According to the above lemma we have
trH" T (H)? = Z)\ Z R
_z i — ..)2+ZH(h.q2
\/ nH2 )2,

where we have put A; = A;;.
Thus we have

—;-AS > _ {(2 - %)52 +nH 1’-::;—_1\/5 " RH?S

n+1
4

(4.8)

—(nH2-|— )S+——cH2}

As the same method in proof of Theorem 1, we consider the equation

f(z) :(2 - i—)zz ++v/n(n? =1)HVz — nH?zx

1 2
— (nH2+ ni— c)a:+ %—(:H2.

(4.9)

Then we have
1
2N . 2 2, -
f(nH?) = n(n — 1)H? (H* 4 40).

Therefore by the assumption there is the least root S; greater than
nH? of (4.9) and the function f is negative on the interval (nH?, S).
So we get sup S = nH?, because of S > nH?, which implies § = nH?2.
This means that M is totally umbilic so we concludes M is totally
geodesic using the theorem of Yano and Kon |11].
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