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CONSTRUCTION OF A COMPLETE NEGATIVELY
CURVED SINGULAR RIEMANNIAN FOLIATION

Haruo KiTAHARA AND HONG KYUNG PAK*

Let (M, g) be a complete Riemannian manifold and G be a closed
(connected) subgroup of the group of isometries of M. Then the union

M of all principal orbits is an open dense subset of M and the quotient
map M — B := M/G becomes a Riemannian submersion for the

restriction of g to ]\04 which gives the quotient metric on g Namely,
B is a singular (complete) Riemannian space such that 9B consists of
non-principal orbits.

We shall discuss a complete singular Riemannian foliation F on a
complete Riemannian manifold (M, g) of dimension m ([4]) such that
B := M/F is a Riemannian manifold of dimension ¢ with boundary,

o]
namely, B is the regular stratum and 9B consists of singular leaves.
Terminology ”complete” means that M is complete as a metric
space. In this situation, we can construct a complete negatively curved
singular Riemannian foliation with leaves $S™~9(1) from (M, g, F) with
the additional conditions :

THEOREM. Let f be a C*-function on B. Suppose that B and f
satisfy the following conditions :

(B.1) the canonically endowed continuous metric of the Riemannian
simple double 2B is smooth,

(B.2) the sectional curvature I{p of B is negative, namely, the
transversal sectional curvature of F is negative, or B := [0, 00),

(F.1) f is a function of the geodesic distance r from 0B, namely, f
is a basic function of the transversal distance r,
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(F.2) f is an odd function of r on a neighborhood of r = 0 and
satisfies that f'(0) = 1, f"(r) > 0 forr > 0, and f"'(r) > 0.

Then there exists a complete strictly negatively curved Riemannian
manifold with S™79(1) as generic leaves.

We shall be in C* -category and manifolds are assumed to be con-
nected, paracompact, Hausdorff spaces.

1. Preliminaries

LEMMA 1.1. (cf. [3], [5], p31) If f(t) is a real-valued C*-even
function on R, then f(r) is a C*®-function on R™~9, where r :=
((1.1)2 4. _+_(l,m—q)2)l/2‘

LEMMA 1.2. ([2]) Let f : R? x R™7 9% _, R be a continuous
function. If f sa,tmﬁes the following conditions :

(1.2.1) f is of class C* on (R? x R™4*1)\(R? x {0}),

(1.2.2) f is invariant under {I;} x O(m — ¢+ 1), where I, is the unit
group on R? and O(m — ¢ + 1) is the rotation group on R™~9%1,

(1.2.3) f is of class C*® on RY x | for any straight line | ¢ R™~ ¢!
through the origin, then f is of class C> on R x R™~9+1,

We suppose that B and f satisfy the following conditions :

(1) B has the Riemannian simple double 2B,

(2) f(z) > 0if z € B\@B, and f is an odd function on a neighbor-
hood of 9B of the arc-length r in the inner normal direction
to OB,

(3) llgrad fli(z) = 1if 2 € 9B.

Let (U, ¢) be a local patch of 9B around a singular leaf whose di-
mension is less than that of the generic leaf. Let N be the e-collar
neighborhood of U in B. We define a manifold A by

N = (N\U) X g1, S™79(1).

Imbedding of S™~4(1) into R™~9*! we define a diffeomorphism ¥ of
N into R? x R™~9+! by

U ((.’1), exp 7‘X)s y) - (gb(.’l?), Ty)’
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where X € T, B is the unit inner normal vector to 8B and 0 < r < e.

We take the Riemannian metric ¢’ on ¥(N') so that ¥ may be-
come an isometry. Note that ¢’ can be extended to the continu-
ous metric ¢' on ¥(N) which is the closure of ¥(A) by the natu-
ral way. We have only to show that ¢’ is of class C* at the ori-
gin. Let (2!,--. 29,27t ... z™*+1) be the Cartesian coordinates of
R? x R™~ 91 And we adopt the ranges of indices :

1<,5<¢ and ¢+1<a,0<m+ 1.

It is clear from Lemma 1.2 that ;',-]- .= ¢'(0/0d2*,8/827 ) is of class C™.
Moreover, we have ¢';_ := ¢'(0/0z%,8/0z%) = z*(1/r)¢'(8/0z",d/0r)
is of class C*°. Finally we see that using polar coordinates

T og i= 9'(8/02%,0/02")
2000 2
g+ LT (0027 ,0/02°)

rd

= Gap f_(a‘_zl___(r g(,3-,r“1ﬁ)

where § is the standard metric on R x R™ 9%, It follows from Lemma
f2!1: r)—r? . oo — . oo
1.2 that 3 is of class C°°. Therefore, ¢’z is of class C*°.
Taking S™79(1) in the tangent space to the generic leaf, we set
= (B\@B) X f| 5,55 5™ 7(1). Then there exists the unique complete
singular Riemannian foliation on M with S™~9(1) as leaves which is
the completion of M.
Summing up, we have

PROPOSITION 1.3. Let M be the regular stratum and B := M /F.
Suppose that B and f satisfy the following conditions :

(1) B has the Riemannian simple double 2B,

(2) f(z)>0ifz € B\OB, and f is an odd function on a neighbor-
hood of OB of the arc-length r in the inner normal direction
to 0B,

(3) llgrad fl|(z) =1 ifx € OB.

Then there exists the unique complete singular Riemannian foliation
on M with S™79(1) as generic leaves.
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LEMMA 1.4. ([1]) Let M := B x5 F be a warped product with a
warping function f where B and F are any Riemannian manifolds. Let
71 and my be the natural projections respectively. Let Il be a 2-plane
tangent to M at r and {X + V|Y + W} an orthonormal basis for II,
where X,Y € Ty, (,)B and VW € T,,(,)F. The sectional curvature
K(IT) of I in M is given by

K(II) = K)lc,Y + I\'Fg(‘y,v,w + K‘sf,w,
where
Ky = Ka(X, V)X A Y}
Kxvvw = —fm@){IWIF(Ve) (X, X)
—2<V.W >p (VB X, Y) + IVIE(VE) YY)},
KV w = fAr(){Krp(V,W) = |igrad flIEHIV A W[E,

and V(y and Ky denote the covariant derivative and the sectional
curvature of (-) respectively and (Vg)>f denotes the Hessian of f.

2. Proof of Theorem

By the conditions imposed on B, there is a diffeomorphism ¥ :
OB x [0,00) — B such that, for any = € 8B, 7,(r) := ¥(z,r) is the
geodesic parametrized by the arc-length r, starting at z and normal
to OB. Since Lemma 2.1, (B.2) and (F.2) imply that K, K% and K
are non-positive on M and at least one of K1, K? and K3 is strictly
negative, it is enough to show that at least one of K', K? and K3 is
strictly negative if » — 0.

Let zo be a boundary point of B and X, Y, V,, W, be any vector
fields along 7,,(r), where X, ¥, are transversal and V;., W,. are tangent
to leaves if r #£ 0.

Case 1. The case that X and Y} are linearly independent. We have

I\’}Y0~)"0 < 0.

Case 2. The case that V, and Wy are linearly independent. (F.1)
and (F.2) imply that
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and

llgrad f(r)lls 2< grad f(r),d/0r >}

- (%)
=14+6ar®+.--.

Then we have

1 llgrad f(r)ify _ 1= (14 6ar? +---)
f3(r) = r?42art .-
—6a + o(7)
1+o(r)

so that
lin(l) K?/r w. < —6a < 0.
r b r

Case 3. The case except Case 1 and Case 2. We can choose
X, Y., Vi, W, such that Y, = X, and W, = ¢,V,, where ¢; and
¢z are constants with ¢; # ¢z. Let II, be the 2-plane spanned by the
orthonormal basis {X, + V., Y, + W,}. Then we have

(IR H(X, Xy

K(Il,) = for)< X, X, >’

To get lim,_.o K(II,) < 0, it is enough to show that

o (V8P H(Xr, X,)

0
2T ) g

under the assumption {|X,[|B = 1.

(V) F)(Xr, Xr) _ f'()(Vex,m)* + F()((VB)*r)( X, X)
f(r) f(r) ’

and (F.2) imply the claim. Therefore we have the Theorem.
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